Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

Frobby

Frobby is a software system and project for computations with monomial ideals. Frobby is free software and it is intended as a vehicle for computational and mathematical research on monomial ideals.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • Frobenius number
  • Frobenius problem
  • irreducible decomposition
  • Apéry set
  • arithmetically Cohen-Macaulay
  • projective monomial curve
  • integer programming gap
  • maximal standard monomial
  • Gröbner basis
  • numerical semigroups
  • coin change problem
  • lattice covering
  • slice algorithm
  • label algorithm
  • fast algorithm
  • semigroup algebra
  • postage-stamp problem
  • Hilbert function
  • Arnold’s conjecture
  • revlex
  • socle
  • knapsack polytope
  • discrete tiling of integer lattice of dimension (n-1)
  • sorting
  • monomial ideal
  • Groebner basis
  • Betti number
  • multiplicity
  • limit distribution
  • affine semigroup

  • URL: www.broune.com/frobby/
  • Code
  • InternetArchive
  • Authors: Bjarke Hammersholt Roune

  • Add information on this software.


  • Related software:
  • CoCoA
  • CoCoALib
  • Normaliz
  • 4ti2
  • GSL
  • SINGULAR
  • Monos
  • libnormaliz
  • fpLLL
  • Macaulay2
  • Show more...
  • Gfan
  • Show less...

References in zbMATH (referenced in 11 articles , 1 standard article )

Showing results 1 to 11 of 11.
y Sorted by year (citations)

  1. Herzog, Jürgen; Stamate, Dumitru I.: Cohen-Macaulay criteria for projective monomial curves via Gröbner bases (2019)
  2. Ojeda, I.; Vigneron-Tenorio, A.: The short resolution of a semigroup algebra (2017)
  3. Robles-Pérez, Aureliano M.; Rosales, José Carlos: The Frobenius number in the set of numerical semigroups with fixed multiplicity and genus (2017)
  4. Abbott, John; Bigatti, Anna Maria: What is new in CoCoALib and CoCoA-5? (2015)
  5. Abbott, John; Bigatti, Anna Maria: What is new in CoCoA? (2014)
  6. Strömbergsson, Andreas: On the limit distribution of Frobenius numbers (2012)
  7. Aliev, Iskander; Henk, Martin; Hinrichs, Aicke: Expected Frobenius numbers (2011)
  8. Roune, Bjarke Hammersholt: The slice algorithm for irreducible decomposition of monomial ideals (2009)
  9. Roune, Bjarke Hammersholt: Solving thousand-digit Frobenius problems using Gröbner bases (2008)
  10. Shallit, Jeffrey: The Frobenius problem and its generalizations (2008)
  11. Einstein, David; Lichtblau, Daniel; Strzebonski, Adam; Wagon, Stan: Frobenius numbers by lattice point enumeration (2007)


Further publications can be found at: http://www.broune.com/papers/index.html
  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 11 Number theory
      • 13 Commutative algebra
      • 14 Algebraic geometry
      • 20 Group theory and...
      • 68 Computer science
    • Other MSC classes
      • 05 Combinatorics
      • 90 Optimization

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000

  • Chart: cumulative / absolute
  • Terms & Conditions
  • Imprint
  • Privacy Policy