ApCoCoA
ApCoCoA, which is the acronym of Applied Computations in Computer Algebra, is based on the computer algebra system CoCoA. You can found informations about CoCoA on its official website and also in the CoCoA section of this wiki.
Keywords for this software
References in zbMATH (referenced in 29 articles )
Showing results 1 to 20 of 29.
Sorted by year (- Guardo, Elena; Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc: Kähler differentials for fat point schemes in (\mathbbP^1\times\mathbbP^1) (2021)
- Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc: Hilbert polynomials of Kähler differential modules for fat point schemes (2021)
- Kreuzer, Martin; Patil, Dilip P.: Computational aspects of Burnside rings. II: Important maps (2021)
- Hashemi, Amir; Kreuzer, Martin; Pourkhajouei, Samira: Computing coupled border bases (2020)
- Horáček, Jan; Kreuzer, Martin: On conversions from CNF to ANF (2020)
- Horáček, Jan; Kreuzer, Martin; Messeng Ekossono, Ange-Salomé: A signature based border basis algorithm (2020)
- Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc; Nguyen, Tu Chanh: An application of liaison theory to zero-dimensional schemes (2020)
- Kreuzer, Martin; Sipal, Bilge; Long, Le Ngoc: On the regularity of the monomial point of a border basis scheme (2020)
- Levandovskyy, Viktor; Schönemann, Hans; Zeid, Karim Abou: \textscLetterplace-- a subsystem of \textscSingularfor computations with free algebras via letterplace embedding (2020)
- Hashemi, Amir; Kreuzer, Martin; Pourkhajouei, Samira: Computing all border bases for ideals of points (2019)
- Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc: The Dedekind different of a Cayley-Bacharach scheme (2019)
- Horáček, Jan; Kreuzer, Martin: 3BA: a border bases solver with a SAT extension (2018)
- Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc: Kähler differential algebras for 0-dimensional schemes (2018)
- Kreuzer, Martin; Long, Le Ngoc: Characterizations of zero-dimensional complete intersections (2017)
- Kreuzer, Martin; Patil, Dilip P.: Computational aspects of Burnside rings. I: The ring structure (2017)
- Braun, Gábor; Pokutta, Sebastian: A polyhedral characterization of border bases (2016)
- Moldenhauer, Anja I. S.; Rosenberger, Gerhard; Rosenthal, Kristina: On the Tits alternative for a class of finitely presented groups with a special focus on symbolic computations (2016)
- Kreuzer, Martin; Linh, Tran N. K.; Long, Le Ngoc: Kähler differentials and Kähler differents for fat point schemes (2015)
- Ullah, E.; Abbas Khan, S.: Computing border bases using mutant strategies (2014)
- Kaspar, Stefan: Computing border bases without using a term ordering (2013)