References in zbMATH (referenced in 105 articles , 2 standard articles )

Showing results 1 to 20 of 105.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Bruns, Winfried; García-Sánchez, Pedro; O’Neill, Christopher; Wilburne, Dane: Wilf’s conjecture in fixed multiplicity (2020)
  2. Eliahou, Shalom: A graph-theoretic approach to Wilf’s conjecture (2020)
  3. Eliahou, Shalom; Fromentin, Jean: Gapsets and numerical semigroups (2020)
  4. García-García, J. I.; Ojeda, I.; Rosales, J. C.; Vigneron-Tenorio, A.: On pseudo-Frobenius elements of submonoids of (\mathbbN^d) (2020)
  5. García-Sánchez, Pedro A.; Herrera-Poyatos, Andrés: Isolated factorizations and their applications in simplicial affine semigroups (2020)
  6. Geroldinger, Alfred; Zhong, Qinghai: Factorization theory in commutative monoids (2020)
  7. Zito, Giuseppe: Arf good semigroups with fixed genus (2020)
  8. Abbas, A.; Assi, A.; García-Sánchez, P. A.: Canonical bases of modules over one dimensional (\mathbfK)-algebras (2019)
  9. Barucci, V.; Strazzanti, F.: Dilatations of numerical semigroups (2019)
  10. Branco, M. B.; Ojeda, I.; Rosales, J. C.: Almost symmetric numerical semigroups with given Frobenius number and type (2019)
  11. D’Anna, Marco; Jafari, Raheleh; Strazzanti, Francesco: Tangent cones of monomial curves obtained by numerical duplication (2019)
  12. Eliahou, Shalom; Fromentin, Jean: Near-misses in Wilf’s conjecture (2019)
  13. García Sánchez, Pedro A.; Ojeda, İgnacio: Almost symmetric numerical semigroups with high type (2019)
  14. García-Sánchez, Pedro A.; O’Neill, Christopher; Webb, Gautam: The computation of factorization invariants for affine semigroups (2019)
  15. Garcia, Stephan Ramon; O’Neill, Christopher; Yih, Samuel: Factorization length distribution for affine semigroups. I: Numerical semigroups with three generators (2019)
  16. Glenn, Jeske; O’Neill, Christopher; Ponomarenko, Vadim; Sepanski, Benjamin: Augmented Hilbert series of numerical semigroups (2019)
  17. Herzog, Jürgen; Hibi, Takayuki; Stamate, Dumitru I.: The trace of the canonical module (2019)
  18. Herzog, Jürgen; Watanabe, Kei-ichi: Almost symmetric numerical semigroups (2019)
  19. Lee, Sung Hyup; O’Neill, Christopher; Van Over, Brandon: On arithmetical numerical monoids with some generators omitted (2019)
  20. Rosales, J. C.; Branco, M. B.: A problem of integer partitions and numerical semigroups (2019)

1 2 3 4 5 6 next