The Palabos library is a framework for general-purpose computational fluid dynamics (CFD), with a kernel based on the lattice Boltzmann (LB) method. It is used both as a research and an engineering tool: its programming interface is straightforward and makes it possible to set up fluid flow simulations with relative ease, or, if you are knowledgeable of the lattice Boltzmann method, to extend the library with your own models. Palabos stands for Parallel Lattice Boltzmann Solver.

References in zbMATH (referenced in 26 articles , 3 standard articles )

Showing results 1 to 20 of 26.
Sorted by year (citations)

1 2 next

  1. Bauer, Martin; Eibl, Sebastian; Godenschwager, Christian; Kohl, Nils; Kuron, Michael; Rettinger, Christoph; Schornbaum, Florian; Schwarzmeier, Christoph; Thönnes, Dominik; Köstler, Harald; Rüde, Ulrich: \textscwaLBerla: a block-structured high-performance framework for multiphysics simulations (2021)
  2. Christos Kotsalos, Jonas Latt, Bastien Chopard: Palabos-npFEM: Software for the Simulation of Cellular Blood Flow (Digital Blood) (2021) not zbMATH
  3. Krause, Mathias J.; Kummerländer, Adrian; Avis, Samuel J.; Kusumaatmaja, Halim; Dapelo, Davide; Klemens, Fabian; Gaedtke, Maximilian; Hafen, Nicolas; Mink, Albert; Trunk, Robin; Marquardt, Jan E.; Maier, Marie-Luise; Haussmann, Marc; Simonis, Stephan: OpenLB -- open source lattice Boltzmann code (2021)
  4. Latt, Jonas; Malaspinas, Orestis; Kontaxakis, Dimitrios; Parmigiani, Andrea; Lagrava, Daniel; Brogi, Federico; Belgacem, Mohamed Ben; Thorimbert, Yann; Leclaire, Sébastien; Li, Sha; Marson, Francesco; Lemus, Jonathan; Kotsalos, Christos; Conradin, Raphaël; Coreixas, Christophe; Petkantchin, Rémy; Raynaud, Franck; Beny, Joël; Chopard, Bastien: Palabos: parallel lattice Boltzmann solver (2021)
  5. Li, Min; Huang, Jingcong; Yang, Zhang; Wang, Yuan; Wu, Changsong; Qu, Lefeng: Calculation of the unit normal vector for wall shear stress in the lattice Boltzmann model (2020)
  6. Takbiri-Borujeni, Ali; Kazemi, Hadi; Nasrabadi, Nasser: A data-driven surrogate to image-based flow simulations in porous media (2020)
  7. Chassagne, Romain; Dörfler, Fabian; Guyenot, Michael; Harting, Jens: Modeling of capillary-driven flows in axisymmetric geometries (2019)
  8. Rao, Parthib; Schaefer, Laura: Lattice Boltzmann models for micro-tomographic pore-spaces (2019)
  9. Adrian R.G. Harwood, Joseph O’Connor, Jonathan Sanchez Muñoz, Marta Camps Santasmasas, Alistair J. Revell: LUMA: A many-core, Fluid–Structure Interaction solver based on the Lattice-Boltzmann Method (2018) not zbMATH
  10. Alpak, F. Omer; Gray, F.; Saxena, N.; Dietderich, J.; Hofmann, R.; Berg, S.: A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images (2018)
  11. Avramenko, Andriy A.; Shevchuk, Igor V.; Kravchuk, Alexander V.: Turbulent incompressible microflow between rotating parallel plates (2018)
  12. Morrison, Helen E.; Leder, Alfred: Sediment transport in turbulent flows with the lattice Boltzmann method (2018)
  13. Thorimbert, Yann; Marson, Francesco; Parmigiani, Andrea; Chopard, Bastien; Lätt, Jonas: Lattice Boltzmann simulation of dense rigid spherical particle suspensions using immersed boundary method (2018)
  14. Wittmann, M.; Haag, V.; Zeiser, T.; Köstler, H.; Wellein, G.: Lattice Boltzmann benchmark kernels as a testbed for performance analysis (2018)
  15. Woodgate, Mark A.; Barakos, George N.; Steijl, Rene; Pringle, Gavin J.: Parallel performance for a real time lattice Boltzmann code (2018)
  16. Schmieschek, S.; Shamardin, L.; Frijters, S.; Krüger, T.; Schiller, U. D.; Harting, J.; Coveney, P. V.: LB3D: a parallel implementation of the lattice-Boltzmann method for simulation of interacting amphiphilic fluids (2017)
  17. Seil, Philippe; Pirker, Stefan: LBDEMcoupling: open-source power for fluid-particle systems (2017)
  18. Wissocq, Gauthier; Gourdain, Nicolas; Malaspinas, Orestis; Eyssartier, Alexandre: Regularized characteristic boundary conditions for the lattice-Boltzmann methods at high Reynolds number flows (2017)
  19. Safi, Mohammad Amin; Turek, Stefan: GPGPU-based rising bubble simulations using a MRT lattice Boltzmann method coupled with level set interface capturing (2016)
  20. Schornbaum, Florian; Rüde, Ulrich: Massively parallel algorithms for the lattice Boltzmann method on nonuniform grids (2016)

1 2 next

Further publications can be found at: