References in zbMATH (referenced in 797 articles )

Showing results 1 to 20 of 797.
Sorted by year (citations)

1 2 3 ... 38 39 40 next

  1. Barsukow, Wasilij: The active flux scheme for nonlinear problems (2021)
  2. Beisiegel, Nicole; Castro, Cristóbal E.; Behrens, Jörn: Metrics for performance quantification of adaptive mesh refinement (2021)
  3. Blachère, Florian; Chalons, Christophe; Turpault, Rodolphe: Very high-order asymptotic-preserving schemes for hyperbolic systems of conservation laws with parabolic degeneracy on unstructured meshes (2021)
  4. Boscheri, Walter; Dimarco, Giacomo; Tavelli, Maurizio: An efficient second order all Mach finite volume solver for the compressible Navier-Stokes equations (2021)
  5. Glaubitz, Jan; Gelb, Anne: Stabilizing radial basis function methods for conservation laws using weakly enforced boundary conditions (2021)
  6. Glaubitz, Jan; Le Meledo, Elise; Öffner, Philipp: Towards stable radial basis function methods for linear advection problems (2021)
  7. Guermond, Jean-Luc; Maier, Matthias; Popov, Bojan; Tomas, Ignacio: Second-order invariant domain preserving approximation of the compressible Navier-Stokes equations (2021)
  8. Han Veiga, Maria; Öffner, Philipp; Torlo, Davide: DeC and ADER: similarities, differences and a unified framework (2021)
  9. Krais, Nico; Beck, Andrea; Bolemann, Thomas; Frank, Hannes; Flad, David; Gassner, Gregor; Hindenlang, Florian; Hoffmann, Malte; Kuhn, Thomas; Sonntag, Matthias; Munz, Claus-Dieter: FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws (2021)
  10. Liska, Richard; Váchal, Pavel; Wendroff, Burton: Lax-Wendroff methods on highly non-uniform meshes. Dedicated to the memory of Blair Swartz (1932--2019) (2021)
  11. Lochab, Ruchika; Kumar, Vivek: An improved flux limiter using fuzzy modifiers for hyperbolic conservation laws (2021)
  12. Peng, Yu-Xiang; Zhang, A-Man; Ming, Fu-Ren: Particle regeneration technique for smoothed particle hydrodynamics in simulation of compressible multiphase flows (2021)
  13. Peszynska, Malgorzata; Showalter, Ralph E.: Approximation of hysteresis functional (2021)
  14. Wu, Kailiang; Xing, Yulong: Uniformly high-order structure-preserving discontinuous Galerkin methods for Euler equations with gravitation: positivity and well-balancedness (2021)
  15. Arsénio, Diogo; Dormy, Emmanuel; Lacave, Christophe: The vortex method for two-dimensional ideal flows in exterior domains (2020)
  16. Bakhvalov, P. A.; Kozubskaya, T. K.: On using artificial viscosity in edge-based schemes on unstructured meshes (2020)
  17. Bello-Maldonado, Pedro D.; Kolev, Tzanio V.; Rieben, Robert N.; Tomov, Vladimir Z.: A matrix-free hyperviscosity formulation for high-order ALE hydrodynamics (2020)
  18. Biswas, Biswarup; Dubey, Ritesh Kumar: ENO and WENO schemes using arc-length based smoothness measurement (2020)
  19. Boscheri, Walter; Dimarco, Giacomo; Loubère, Raphaël; Tavelli, Maurizio; Vignal, Marie-Hélène: A second order all Mach number IMEX finite volume solver for the three dimensional Euler equations (2020)
  20. Boso, Francesca; Tartakovsky, Daniel M.: Data-informed method of distributions for hyperbolic conservation laws (2020)

1 2 3 ... 38 39 40 next