QuTiP is open-source software for simulating the dynamics of open quantum systems. The QuTiP library depends on the excellent Numpy and Scipy numerical packages. In addition, graphical output is provided by Matplotlib. QuTiP aims to provide user-friendly and efficient numerical simulations of a wide variety of Hamiltonians, including those with arbitrary time-dependence, commonly found in a wide range of physics applications such as quantum optics, trapped ions, superconducting circuits, and quantum nanomechanical resonators. QuTiP is freely available for use and/or modification on all Unix based platforms such as Linux and Mac OSX. Being free of any licensing fees, QuTiP is ideal for exploring quantum mechanics and dynamics in the classroom. QuTiP may also be thought of as an open source alternative to the popular, but aging, Quantum Optics Toolbox (qotoolbox), although we do not aim to be in one-to-one correspondence.

References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Meyerov, I.; Liniov, A.; Ivanchenko, M.; Denisov, S.: Modeling complex quantum dynamics: evolution of numerical algorithms in the HPC context (2020)
  2. S. Eckel, D. S. Barker, E. B. Norrgard, J. Scherschligt: PyLCP: A python package for computing laser cooling physics (2020) arXiv
  3. Thomas Kloss, Joseph Weston, Benoit Gaury, Benoit Rossignol, Christoph Groth, Xavier Waintal: Tkwant: a software package for time-dependent quantum transport (2020) arXiv
  4. Türkpençe, Deniz: Reservoir induced activation of a quantum neuron (2020)
  5. Michael H. Goerz, Daniel Basilewitsch, Fernando Gago-Encinas, Matthias G. Krauss, Karl P. Horn, Daniel M. Reich, Christiane P. Koch: Krotov: A Python implementation of Krotov’s method for quantum optimal control (2019) arXiv
  6. Diniz, E. C.; Rossatto, D. Z.; Villas-Boas, C. J.: Two-mode squeezing operator in circuit QED (2018)
  7. Jaschke, Daniel; Carr, Lincoln D.: Open source matrix product states: exact diagonalization and other entanglement-accurate methods revisited in quantum systems (2018)
  8. Jens Jakob Sørensen, Jesper Jensen, Till Heinzel, Jacob Sherson: QEngine: An open-source C++ Library for Quantum Optimal Control of Ultracold Atoms (2018) arXiv
  9. Larocca, Martín; Poggi, Pablo M.; Wisniacki, Diego A.: Quantum control landscape for a two-level system near the quantum speed limit (2018)
  10. Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, Christian Weedbrook: Strawberry Fields: A Software Platform for Photonic Quantum Computing (2018) arXiv
  11. Phillip Weinberg, Marin Bukov: QuSpin: a Python Package for Dynamics and Exact Diagonalisation of Quantum Many Body Systems. Part II: bosons, fermions and higher spins (2018) arXiv
  12. Yamamoto, Alexandre Y.; Sundqvist, Kyle M.; Li, Peng; Harris, H. Rusty: Simulation of a multidimensional input quantum perceptron (2018)
  13. Axel Dahlberg; Stephanie Wehner: SimulaQron - A simulator for developing quantum internet software (2017) arXiv
  14. Burkhard Schmidt, Carsten Hartmann: WavePacket: A Matlab package for numerical quantum dynamics. II: Open quantum systems, optimal control, and model reduction (2017) arXiv
  15. De Roeck, Wojciech; Dhar, Abhishek; Huveneers, François; Schütz, Marius: Step density profiles in localized chains (2017)
  16. Gu, Xiu; Kockum, Anton Frisk; Miranowicz, Adam; Liu, Yu-xi; Nori, Franco: Microwave photonics with superconducting quantum circuits (2017)
  17. Marshman, Emily; Singh, Chandralekha: Investigating and improving student understanding of the probability distributions for measuring physical observables in quantum mechanics (2017)
  18. Sebastian Krämer, David Plankensteiner, Laurin Ostermann, Helmut Ritsch: QuantumOptics.jl: A Julia framework for simulating open quantum systems (2017) arXiv
  19. Dajka, Jerzy; Łobejko, Marcin; Łuczka, Jerzy: Leggett-Garg inequalities for a quantum top affected by classical noise (2016)
  20. Granade, Christopher; Combes, Joshua; Cory, D. G.: Practical Bayesian tomography (2016)

1 2 next