libMesh

The libMesh library provides a framework for the numerical simulation of partial differential equations using arbitrary unstructured discretizations on serial and parallel platforms. A major goal of the library is to provide support for adaptive mesh refinement (AMR) computations in parallel while allowing a research scientist to focus on the physics they are modeling. libMesh currently supports 1D, 2D, and 3D steady and transient simulations on a variety of popular geometric and finite element types. The library makes use of high-quality, existing software whenever possible. PETSc is used for the solution of linear systems on both serial and parallel platforms, and LASPack is included with the library to provide linear solver support on serial machines. An optional interface to SLEPc is also provided for solving both standard and generalized eigenvalue problems.


References in zbMATH (referenced in 130 articles , 1 standard article )

Showing results 101 to 120 of 130.
Sorted by year (citations)
  1. Botti, Lorenzo; Piccinelli, Marina; Ene-Iordache, Bogdan; Remuzzi, Andrea; Antiga, Luca: An adaptive mesh refinement solver for large-scale simulation of biological flows (2010)
  2. Brown, Jed: Efficient nonlinear solvers for nodal high-order finite elements in 3D (2010)
  3. Carey, Graham F.; Knezevic, David J.: Multiscale and hysteresis effects in vortex pattern simulations for Ginzburg-Landau problems (2010)
  4. Kirk, Benjamin S.: Adiabatic shock capturing in perfect gas hypersonic flows (2010)
  5. Montagnier, J.; Buffat, M.; Guibert, D.: Parallel computation of pollutant dispersion in industrial sites (2010)
  6. Nagler, Loris; Schanz, Martin: An extendable poroelastic plate formulation in dynamics (2010)
  7. Ahn, Hyung Taek; Shashkov, Mikhail; Christon, Mark A.: The moment-of-fluid method in action (2009)
  8. Bangerth, W.; Kayser-Herold, O.: Data structures and requirements for \textithpfinite element software (2009)
  9. Barone, Matthew F.; Kalashnikova, Irina; Segalman, Daniel J.; Thornquist, Heidi K.: Stable Galerkin reduced-order models for linearized compressible flow (2009)
  10. Biermann, Jan; von Estorff, Otto; Petersen, Steffen; Wenterodt, Christina: Higher order finite and infinite elements for the solution of Helmholtz problems (2009)
  11. Burstedde, Carsten; Ghattas, Omar; Stadler, Georg; Tu, Tiankai; Wilcox, Lucas C.: Parallel scalable adjoint-based adaptive solution of variable-viscosity Stokes flow problems (2009)
  12. Class, Holger; Ebigbo, Anozie; Helmig, Rainer; Dahle, Helge K.; Nordbotten, Jan M.; Celia, Michael A.; Audigane, Pascal; Darcis, Melanie; Ennis-King, Jonathan; Fan, Yaqing; Flemisch, Bernd; Gasda, Sarah E.; Jin, Min; Krug, Stefanie; Labregere, Diane; Beni, Ali Naderi; Pawar, Rajesh J.; Sbai, Adil; Thomas, Sunil G.; Trenty, Laurent; Wei, Lingli: A benchmark study on problems related to CO(_2) storage in geologic formations. Summary and discussion of the results (2009)
  13. Espinha, Rodrigo; Celes, Waldemar; Rodriguez, Noemi; Paulino, Glaucio H.: ParTopS: compact topological framework for parallel fragmentation simulations (2009) ioport
  14. Kirk, Benjamin S.; Carey, Graham F.: A parallel, adaptive finite element scheme for modeling chemotactic biological systems (2009)
  15. Knezevic, David J.; Süli, Endre: A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model (2009)
  16. Lu, Yujie; Chatziioannou, Arion F.: A parallel adaptive finite element method for the simulation of photon migration with the radiative-transfer-based model (2009)
  17. Valli, A. M. P.; Elias, R. N.; Carey, G. F.; Coutinho, A. L. G. A.: PID adaptive control of incremental and arclength continuation in nonlinear applications (2009)
  18. Wang, Shun; de Sturler, Eric: Multilevel sparse approximate inverse preconditioners for adaptive mesh refinement (2009)
  19. Barth, William L.; Branets, Larisa V.; Carey, Graham F.: Non-Newtonian flow in branched pipes and artery models (2008)
  20. Kröger, Tim; Preusser, Tobias: Stability of the 8-tetrahedra shortest-interior-edge partitioning method (2008)

Further publications can be found at: http://libmesh.sourceforge.net/publications.php