House of Graphs

House of graphs: A database of interesting graphs. In this note we present House of Graphs (http://hog.grinvin.org) which is a new database of graphs. The key principle is to have a searchable database and offer -- next to complete lists of some graph classes-also a list of special graphs that have already turned out to be interesting and relevant in the study of graph theoretic problems or as counterexamples to conjectures. This list can be extended by users of the database.


References in zbMATH (referenced in 44 articles , 1 standard article )

Showing results 1 to 20 of 44.
Sorted by year (citations)

1 2 3 next

  1. Bille, Artur; Buchstaber, Victor; Spodarev, Evgeny: Spectral clustering of combinatorial fullerene isomers based on their facet graph structure (2021)
  2. Cameron, Kathie; Goedgebeur, Jan; Huang, Shenwei; Shi, Yongtang: (k)-critical graphs in (P_5)-free graphs (2021)
  3. Fischer, Mareike; Herbst, Lina; Galla, Michelle; Long, Yangjing; Wicke, Kristina: Unrooted non-binary tree-based phylogenetic networks (2021)
  4. Máčajová, Edita; Škoviera, Martin: Critical and flow-critical snarks coincide (2021)
  5. Okrasa, Karolina; Rzążewski, Paweł: Fine-grained complexity of the graph homomorphism problem for bounded-treewidth graphs (2021)
  6. Berčič, Katja; Vidali, Janoš: DiscreteZOO: a fingerprint database of discrete objects (2020)
  7. Chudnovsky, Maria; Goedgebeur, Jan; Schaudt, Oliver; Zhong, Mingxian: Obstructions for three-coloring graphs without induced paths on six vertices (2020)
  8. Chudnovsky, Maria; Goedgebeur, Jan; Schaudt, Oliver; Zhong, Mingxian: Obstructions for three-coloring and list three-coloring (H)-free graphs (2020)
  9. Fowler, Patrick W.; Gauci, John Baptist; Goedgebeur, Jan; Pisanski, Tomaž; Sciriha, Irene: Existence of regular nut graphs for degree at most 11 (2020)
  10. Goedgebeur, Jan; Máčajová, Edita; Škoviera, Martin: The smallest nontrivial snarks of oddness 4 (2020)
  11. Goedgebeur, Jan; Mattiolo, Davide; Mazzuoccolo, Giuseppe: Computational results and new bounds for the circular flow number of snarks (2020)
  12. Goedgebeur, Jan; Meersman, Barbara; Zamfirescu, Carol T.: Graphs with few Hamiltonian cycles (2020)
  13. Klocker, Benedikt; Fleischner, Herbert; Raidl, Günther R.: A model for finding transition-minors (2020)
  14. Kothari, Nishad; de Carvalho, Marcelo H.; Lucchesi, Cláudio L.; Little, Charles H. C.: On essentially 4-edge-connected cubic bricks (2020)
  15. Lauri, Juho; Mitillos, Christodoulos: Perfect Italian domination on planar and regular graphs (2020)
  16. Abrishami, Gholamreza; Rahbarnia, Freydoon: A note on the smallest connected non-traceable cubic bipartite planar graph (2019)
  17. Goedgebeur, Jan; Máčajová, Edita; Škoviera, Martin: Smallest snarks with oddness 4 and cyclic connectivity 4 have order 44 (2019)
  18. Hoffmann-Ostenhof, Arthur; Jatschka, Thomas: Snarks with special spanning trees (2019)
  19. Erokhovets, Nikolai: Construction of fullerenes and Pogorelov polytopes with 5-, 6- and one 7-gonal face (2018)
  20. Goedgebeur, Jan: On the smallest snarks with oddness 4 and connectivity 2 (2018)

1 2 3 next