DsTool is a program for interactively exporing the dynamics of dynamical systems. It allows you to draw trajectories, to find fixed points or bifurcation points. Dynamical systems arise in many disciplins of physics, biology and chemistry - basically always whenever something can be described by a set ordinary differential equations. The methods employed by the theory of dynamical systems allow to compute important properties directly without the need for long brute-force simulations.

References in zbMATH (referenced in 103 articles )

Showing results 1 to 20 of 103.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Barrio, Roberto; Carvalho, Maria; Castro, Luísa; Rodrigues, Alexandre A. P.: Experimentally accessible orbits near a Bykov cycle (2020)
  2. Hittmeyer, Stefanie; Krauskopf, Bernd; Osinga, Hinke M.: Generalized Mandelbrot and Julia sets in a family of planar angle-doubling maps (2020)
  3. Hittmeyer, Stefanie; Krauskopf, Bernd; Osinga, Hinke M.; Shinohara, Katsutoshi: How to identify a hyperbolic set as a blender (2020)
  4. Burylko, Oleksandr; Mielke, Alexander; Wolfrum, Matthias; Yanchuk, Serhiy: Coexistence of Hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling (2018)
  5. Hittmeyer, Stefanie; Krauskopf, Bernd; Osinga, Hinke M.; Shinohara, Katsutoshi: Existence of blenders in a Hénon-like family: geometric insights from invariant manifold computations (2018)
  6. Smaoui, Nejib: Symmetries, dynamics, and control for the 2D Kolmogorov flow (2018)
  7. Smaoui, Nejib; Zribi, Mohamed: On the control of the chaotic attractors of the 2-d Navier-Stokes equations (2017)
  8. Linaro, Daniele; Storace, Marco: \textscBAL: a library for the \textitbrute-force analysis of dynamical systems (2016)
  9. Smaoui, Nejib; Zribi, Mohamed: Dynamics and control of the 2-d Navier-Stokes equations (2014)
  10. Aguirre, Pablo; Doedel, Eusebius J.; Krauskopf, Bernd; Osinga, Hinke M.: Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields (2011)
  11. Sánchez, Juan; Net, Marta: On the multiple shooting continuation of periodic orbits by Newton-Krylov methods (2010)
  12. Zhusubaliyev, Zhanybai T.; Mosekilde, Erik: Multilayered tori in a system of two coupled logistic maps (2009)
  13. Zhusubaliyev, Zhanybai T.; Mosekilde, Erik: Novel routes to chaos through torus breakdown in non-invertible maps (2009)
  14. Derks, Gianne; Ebert, Ute; Meulenbroek, Bernard: Laplacian instability of planar streamer ionization fronts---An example of pulled front analysis (2008)
  15. Algaba, Antonio; Freire, Emilio; Gamero, Estanislao; Rodríguez-Luis, Alejandro J.: Resonances of periodic orbits in Rössler system in presence of a triple-zero bifurcation (2007)
  16. Freire, Emilio; Rodríguez-Luis, Alejandro J.: Numerical bifurcation analysis of electronic circuits (2007)
  17. Govaerts, W.; Ghaziani, R. Khoshsiar; Kuznetsov, Yu. A.; Meijer, H. G. E.: Numerical methods for two-parameter local bifurcation analysis of maps (2007)
  18. van Voorn, George A. K.; Hemerik, Lia; Boer, Martin P.; Kooi, Bob W.: Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect (2007)
  19. Aguiar, Manuela A. D.; Castro, Sofia B. S. D.; Labouriau, Isabel S.: Simple vector fields with complex behavior (2006)
  20. Doedel, Eusebius; Krauskopf, Bernd; Osinga, Hinke M.: Global bifurcations of the Lorenz manifold (2006)

1 2 3 4 5 6 next