Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 136 articles )

Showing results 1 to 20 of 136.
Sorted by year (citations)

1 2 3 ... 5 6 7 next

  1. Assous, Franck; Furman, Yevgeni: Multi-scale paraxial models to approximate Vlasov-Maxwell equations (2022)
  2. Bessemoulin-Chatard, Marianne; Filbet, Francis: On the stability of conservative discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system (2022)
  3. Cai, Xiaofeng; Guo, Wei; Qiu, Jing-Mei: Comparison of semi-Lagrangian discontinuous Galerkin schemes for linear and nonlinear transport simulations (2022)
  4. Caliari, Marco; Cassini, Fabio; Einkemmer, Lukas; Ostermann, Alexander; Zivcovich, Franco: A (\mu)-mode integrator for solving evolution equations in Kronecker form (2022)
  5. Filbet, Francis; Xiong, Tao: Conservative discontinuous Galerkin/Hermite spectral method for the Vlasov-Poisson system (2022)
  6. Gu, Anjiao; He, Yang; Sun, Yajuan: Hamiltonian particle-in-cell methods for Vlasov-Poisson equations (2022)
  7. Zhang, Guoliang; Xiong, Tao: A high order bound preserving finite difference linear scheme for incompressible flows (2022)
  8. Zheng, Nanyi; Cai, Xiaofeng; Qiu, Jing-Mei; Qiu, Jianxian: A fourth-order conservative semi-Lagrangian finite volume WENO scheme without operator splitting for kinetic and fluid simulations (2022)
  9. Chen, Jiajie; Cai, Xiaofeng; Qiu, Jianxian; Qiu, Jing-Mei: Adaptive order WENO reconstructions for the semi-Lagrangian finite difference scheme for advection problem (2021)
  10. Chiabó, L.; Sánchez-Arriaga, G.: Limitations of stationary Vlasov-Poisson solvers in probe theory (2021)
  11. Cho, Seung Yeon; Boscarino, Sebastiano; Russo, Giovanni; Yun, Seok-Bae: Conservative semi-Lagrangian schemes for kinetic equations part. II: Applications (2021)
  12. Cho, Seung Yeon; Boscarino, Sebastiano; Russo, Giovanni; Yun, Seok-Bae: Conservative semi-Lagrangian schemes for kinetic equations. I: Reconstruction (2021)
  13. Ding, Zhiyan; Einkemmer, Lukas; Li, Qin: Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in the diffusion limit (2021)
  14. Filbet, Francis; Rodrigues, L. Miguel; Zakerzadeh, Hamed: Convergence analysis of asymptotic preserving schemes for strongly magnetized plasmas (2021)
  15. Liu, Hongtao; Cai, Xiaofeng; Lapenta, Giovanni; Cao, Yong: Conservative semi-Lagrangian kinetic scheme coupled with implicit finite element field solver for multidimensional Vlasov Maxwell system (2021)
  16. Nikl, Jan; Göthel, Ilja; Kuchařík, Milan; Weber, Stefan; Bussmann, Michael: Implicit reduced Vlasov-Fokker-Planck-Maxwell model based on high-order mixed elements (2021)
  17. Zheng, Nanyi; Cai, Xiaofeng; Qiu, Jing-Mei; Qiu, Jianxian: A conservative semi-Lagrangian hybrid Hermite WENO scheme for linear transport equations and the nonlinear Vlasov-Poisson system (2021)
  18. Crouseilles, Nicolas; Einkemmer, Lukas; Massot, Josselin: Exponential methods for solving hyperbolic problems with application to collisionless kinetic equations (2020)
  19. Goudon, Thierry; Vivion, Léo: Numerical investigation of Landau damping in dynamical Lorentz gases (2020)
  20. Wang, Hanquan; Cheng, Ronghua; Wu, Xinming: A splitting Fourier pseudospectral method for Vlasov-Poisson-Fokker-Planck system (2020)

1 2 3 ... 5 6 7 next

Further publications can be found at: