Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 120 articles )

Showing results 41 to 60 of 120.
Sorted by year (citations)
  1. Zhu, Hongqiang; Qiu, Jianxian; Qiu, Jing-Mei: An (h)-adaptive RKDG method for the Vlasov-Poisson system (2016)
  2. Bostan, Mihai: On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields (2015)
  3. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Numerical study of the two-species Vlasov-Ampère system: energy-conserving schemes and the current-driven ion-acoustic instability (2015)
  4. Einkemmer, Lukas; Ostermann, Alexander: On the error propagation of semi-Lagrange and Fourier methods for advection problems (2015)
  5. Einkemmer, Lukas; Ostermann, Alexander: A splitting approach for the Kadomtsev-Petviashvili equation (2015)
  6. Frénod, Emmanuel; Hirstoaga, Sever A.; Sonnendrücker, Eric: An exponential integrator for a highly oscillatory Vlasov equation (2015)
  7. Kormann, Katharina: A semi-Lagrangian Vlasov solver in tensor train format (2015)
  8. Lutz, Mathieu: Application of Lie transform techniques for simulation of a charged particle beam (2015)
  9. Taitano, William T.; Chacón, Luis: Charge-and-energy conserving moment-based accelerator for a multi-species Vlasov-Fokker-Planck-Ampère system, part I: Collisionless aspects (2015)
  10. Back, Aurore; Sonnendrücker, Eric: Finite element Hodge for spline discrete differential forms. Application to the Vlasov-Poisson system (2014)
  11. Campos Pinto, Martin; Sonnendrücker, Eric; Friedman, Alex; Grote, David P.; Lund, Steve M.: Noiseless Vlasov-Poisson simulations with linearly transformed particles (2014)
  12. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system (2014)
  13. Cheng, Yingda; Christlieb, Andrew J.; Zhong, Xinghui: Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system (2014)
  14. Christlieb, Andrew; Guo, Wei; Morton, Maureen; Qiu, Jing-Mei: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations (2014)
  15. Güçlü, Yaman; Christlieb, Andrew J.; Hitchon, William N. G.: Arbitrarily high order convected scheme solution of the Vlasov-Poisson system (2014)
  16. Vogman, G. V.; Colella, P.; Shumlak, U.: Dory-Guest-Harris instability as a benchmark for continuum kinetic Vlasov-Poisson simulations of magnetized plasmas (2014)
  17. Xiong, Tao; Qiu, Jing-Mei; Xu, Zhengfu; Christlieb, Andrew: High order maximum principle preserving semi-Lagrangian finite difference WENO schemes for the Vlasov equation (2014)
  18. Yang, Chang; Filbet, Francis: Conservative and non-conservative methods based on Hermite weighted essentially non-oscillatory reconstruction for Vlasov equations (2014)
  19. Acebrón, Juan A.; Rodríguez-Rozas, Ángel: Highly efficient numerical algorithm based on random trees for accelerating parallel Vlasov-Poisson simulations (2013)
  20. Crouseilles, Nicolas; Lemou, Mohammed; Méhats, Florian: Asymptotic preserving schemes for highly oscillatory Vlasov-Poisson equations (2013)

Further publications can be found at: