Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 120 articles )

Showing results 61 to 80 of 120.
Sorted by year (citations)
  1. Filbet, Francis; Yang, Chang: An inverse Lax-Wendroff method for boundary conditions applied to Boltzmann type models (2013)
  2. Guo, Wei; Qiu, Jing-Mei: Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation (2013)
  3. Hittinger, J. A. F.; Banks, J. W.: Block-structured adaptive mesh refinement algorithms for Vlasov simulation (2013)
  4. Mehrenberger, M.; Steiner, C.; Marradi, L.; Crouseilles, N.; Sonnendrücker, E.; Afeyan, B.: Vlasov on GPU (VOG project) (2013)
  5. Pham, N.; Helluy, P.; Crestetto, A.: Space-only hyperbolic approximation of the Vlasov equation (2013)
  6. Cheng, Yingda; Gamba, Irene M.: Numerical study of one-dimensional Vlasov-Poisson equations for infinite homogeneous stellar systems (2012)
  7. Crouseilles, Nicolas; Glanc, Pierre; Mehrenberger, Michel; Steiner, Christophe: Finite volume schemes for Vlasov (2012)
  8. De Dios, Blanca Ayuso; Carrillo, José A.; Shu, Chi-Wang: Discontinuous Galerkin methods for the multi-dimensional Vlasov-Poisson problem (2012)
  9. Lipatov, Alexander S.: Merging for particle-mesh complex particle kinetic modeling of the multiple plasma beams (2012)
  10. Umeda, Takayuki; Nariyuki, Yasuhiro; Kariya, Daichi: A non-oscillatory and conservative semi-Lagrangian scheme with fourth-degree polynomial interpolation for solving the Vlasov equation (2012)
  11. Abiteboul, J.; Latu, G.; Grandgirard, V.; Ratnani, A.; Sonnendrücker, E.; Strugarek, A.: Solving the Vlasov equation in complex geometries (2011)
  12. Ayuso, Blanca; Carrillo, José A.; Shu, Chi-Wang: Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system (2011)
  13. Crouseilles, N.; Mehrenberger, M.; Vecil, F.: Discontinuous Galerkin semi-Lagrangian method for Vlasov-Poisson (2011)
  14. Lu, Tiao; Du, Gang; Liu, Xiaoyan; Zhang, Pingwen: A finite volume method for the multi subband Boltzmann equation with realistic 2D scattering in double gate MOSFETs (2011)
  15. Minoshima, Takashi; Matsumoto, Yosuke; Amano, Takanobu: Multi-moment advection scheme for Vlasov simulations (2011)
  16. Qiu, Jing-Mei; Shu, Chi-Wang: Conservative high order semi-Lagrangian finite difference WENO methods for advection in incompressible flow (2011)
  17. Qiu, Jing-Mei; Shu, Chi-Wang: Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: theoretical analysis and application to the Vlasov-Poisson system (2011)
  18. Respaud, Thomas; Sonnendrücker, Eric: Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations (2011)
  19. Rossmanith, James A.; Seal, David C.: A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations (2011)
  20. Wang, B.; Miller, G. H.; Colella, P.: A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas (2011)

Further publications can be found at: