Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.

References in zbMATH (referenced in 120 articles )

Showing results 81 to 100 of 120.
Sorted by year (citations)
  1. Adler, J. H.; Manteuffel, T. A.; McCormick, S. F.; Ruge, J. W.; Sanders, G. D.: Nested iteration and first-order system least squares for incompressible, resistive magnetohydrodynamics (2010)
  2. Crouseilles, Nicolas; Mehrenberger, Michel; Sonnendrücker, Eric: Conservative semi-Lagrangian schemes for Vlasov equations (2010)
  3. Degond, Pierre; Deluzet, Fabrice; Navoret, Laurent; Sun, An-Bang; Vignal, Marie-Hélène: Asymptotic-preserving particle-in-cell method for the Vlasov-Poisson system near quasineutrality (2010)
  4. Qiu, Jing-Mei; Christlieb, Andrew: A conservative high order semi-Lagrangian WENO method for the Vlasov equation (2010)
  5. Vauchelet, Nicolas; Dudon, Jean-Paul; Besse, Christophe; Goudon, Thierry: Comparison of Vlasov solvers for spacecraft charging simulation (2010)
  6. Xu, Jin; Mustapha, Brahim; Ostroumov, Peter; Nolen, Jerry: Direct Vlasov solvers with high-order spectral element method (2010)
  7. Xu, J.; Ostroumov, P. N.; Mustapha, B.; Nolen, J.: Scalable direct Vlasov solver with discontinuous Galerkin method on unstructured mesh (2010)
  8. Belaouar, R.; Crouseilles, N.; Degond, P.; Sonnendrücker, E.: An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit (2009)
  9. Bostan, Mihai; Crouseilles, Nicolas: Convergence of a semi-Lagrangian scheme for the reduced Vlasov-Maxwell system for laser-plasma interaction (2009)
  10. Crouseilles, Nicolas; Latu, Guillaume; Sonnendrücker, Eric: A parallel Vlasov solver based on local cubic spline interpolation on patches (2009)
  11. Crouseilles, Nicolas; Respaud, Thomas; Sonnendrücker, Eric: A forward semi-Lagrangian method for the numerical solution of the Vlasov equation (2009)
  12. Duclous, Roland; Dubroca, Bruno; Filbet, Francis; Tikhonchuk, Vladimir: High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications (2009)
  13. Frénod, Emmanuel; Salvarani, Francesco; Sonnendrücker, Eric: Long time simulation of a beam in a periodic focusing channel via a two-scale pic-method (2009)
  14. Imadera, Kenji; Kishimoto, Yasuaki; Saito, Daisuke; Li, Jiquan; Utsumi, Takayuki: A numerical method for solving the Vlasov-Poisson equation based on the conservative IDO scheme (2009)
  15. Mouton, Alexandre: Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel (2009)
  16. Sircombe, N. J.; Arber, T. D.: VALIS: a split-conservative scheme for the relativistic 2D Vlasov-Maxwell system (2009)
  17. Asadzadeh, M.; Larsen, E. W.: Linear transport equations in flatland with small angular diffusion and their finite element approximations (2008)
  18. Campos Pinto, Martin; Mehrenberger, Michel: Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system (2008)
  19. Carrillo, J. A.; Goudon, T.; Lafitte, P.; Vecil, F.: Numerical schemes of diffusion asymptotics and moment closures for kinetic equations (2008)
  20. Crouseilles, N.; Gutnic, M.; Latu, G.; Sonnendrücker, E.: Comparison of two Eulerian solvers for the four-dimensional Vlasov equation. II (2008)

Further publications can be found at: