Vador

Vlasov Approximation by a Direct and Object-oriented Resolution. The Vlasov equation describes the evolution of a system of particles under the effects of self-consistent electro magnetic fields. The unknown f(t,x,v), depending on the time t, the position x, and the velocity v, represents the distribution function of particles (electrons, ions,...) in phase space. This model can be used for the study of beam propagation or of a collisionless plasma.


References in zbMATH (referenced in 120 articles )

Showing results 101 to 120 of 120.
Sorted by year (citations)

previous 1 2 3 4 5 6

  1. Crouseilles, N.; Gutnic, M.; Latu, G.; Sonnendrücker, E.: Comparison of two Eulerian solvers for the four-dimensional Vlasov equation. I. (2008)
  2. Mašek, Martin; Rohlena, Karel: Stimulated Raman scattering in the presence of trapped particle instability (2008)
  3. Carrillo, J. A.; Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models (2007)
  4. Crouseilles, Nicolas; Latu, Guillaume; Sonnendrücker, Eric: Hermite spline interpolation on patches for parallelly solving the Vlasov-Poisson equation (2007)
  5. Eliasson, B.: Outflow boundary conditions for the Fourier transformed three-dimensional Vlasov-Maxwell system (2007)
  6. Bostan, Mihai; Sonnendrücker, Eric: Periodic solutions for nonlinear elliptic equations. Application to charged particle beam focusing systems (2006)
  7. Elkina, N. V.; Büchner, J.: A new conservative unsplit method for the solution of the Vlasov equation (2006)
  8. Filbet, Francis; Sonnendrücker, Eric: Modeling and numerical simulation of space charge dominated beams in the paraxial approximation (2006)
  9. Herty, M.; Illner, R.; Klar, A.; Panferov, V.: Qualitative properties of solutions to systems of Fokker-Planck equations for multilane traffic flow (2006)
  10. Le Bourdiec, S.; De Vuyst, F.; Jacquet, L.: Numerical solution of the Vlasov-Poisson system using generalized Hermite functions (2006)
  11. Schmitz, H.; Grauer, R.: Comparison of time splitting and backsubstitution methods for integrating Vlasov’s equation with magnetic fields (2006)
  12. Schmitz, H.; Grauer, R.: Darwin--Vlasov simulations of magnetised plasmas (2006)
  13. Eliasson, Bengt: The parallel implementation of the one-dimensional Fourier transformed Vlasov-Poisson system (2005)
  14. Watanabe, T.-H.; Sugama, H.: Vlasov and drift kinetic simulation methods based on the symplectic integrator (2005)
  15. Crouseilles, Nicolas; Filbet, Francis: Numerical approximation of collisional plasmas by high-order methods (2004)
  16. Filbet, Francis; Russo, Giovanni: Accurate numerical methods for the Boltzmann equation (2004)
  17. Labrunie, Simon; Carrillo, José A.; Bertrand, Pierre: Numerical study on hydrodynamic and quasi-neutral approximations for collisionless two-species plasmas (2004)
  18. Besse, N.; Sonnendrücker, E.: Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space (2003)
  19. Filbet, F.; Sonnendrücker, E.: Comparison of Eulerian Vlasov solvers (2003)
  20. Arber, T. D.; Vann, R. G. L.: A critical comparison of Eulerian-grid-based Vlasov solvers (2002)

previous 1 2 3 4 5 6


Further publications can be found at: http://www.univ-orleans.fr/mapmo/membres/filbet/index_vad.html