References in zbMATH (referenced in 174 articles , 1 standard article )

Showing results 1 to 20 of 174.
Sorted by year (citations)

1 2 3 ... 7 8 9 next

  1. Arumugam, Gurusamy; Tyagi, Jagmohan: Keller-Segel chemotaxis models: a review (2021)
  2. Carrillo, José A.; Castro, Manuel J.; Kalliadasis, Serafim; Perez, Sergio P.: High-order well-balanced finite-volume schemes for hydrodynamic equations with nonlocal free energy (2021)
  3. Carrillo, José A.; Fjordholm, Ulrik S.; Solem, Susanne: A second-order numerical method for the aggregation equations (2021)
  4. Hashim, Mohammed H.; Harfash, Akil J.: Finite element analysis of a Keller-Segel model with additional cross-diffusion and logistic source. I: Space convergence (2021)
  5. Zhou, Guanyu: An analysis on the finite volume schemes and the discrete Lyapunov inequalities for the chemotaxis system (2021)
  6. Atlas, Abdelghafour; Bendahmane, Mostafa; Karami, Fahd; Meskine, Driss; Zagour, Mohamed: Kinetic-fluid derivation and mathematical analysis of a nonlocal cross-diffusion-fluid system (2020)
  7. Benzakour Amine, M.: Linearized implicit methods based on a single-layer neural network: application to Keller-Segel models (2020)
  8. Carrillo, José A.; Kalliadasis, Serafim; Perez, Sergio P.; Shu, Chi-Wang: Well-balanced finite-volume schemes for hydrodynamic equations with general free energy (2020)
  9. Delarue, François; Lagoutière, Frédéric; Vauchelet, Nicolas: Convergence analysis of upwind type schemes for the aggregation equation with pointy potential (2020)
  10. Egger, Herbert; Schöbel-Kröhn, Lukas: Chemotaxis on networks: analysis and numerical approximation (2020)
  11. Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A.: Study of a chemo-repulsion model with quadratic production. II: Analysis of an unconditionally energy-stable fully discrete scheme (2020)
  12. Guillén-González, F.; Rodríguez-Bellido, M. A.; Rueda-Gómez, D. A.: Study of a chemo-repulsion model with quadratic production. I: Analysis of the continuous problem and time-discrete numerical schemes (2020)
  13. Ha, Seung-Yeal; Kim, Doheon; Zou, Weiyuan: Slow flocking dynamics of the Cucker-Smale ensemble with a chemotactic movement in a temperature field (2020)
  14. Ibrahim, Moustafa; Quenjel, El Houssaine; Saad, Mazen: Positive nonlinear DDFV scheme for a degenerate parabolic system describing chemotaxis (2020)
  15. Li, Wuchen; Lu, Jianfeng; Wang, Li: Fisher information regularization schemes for Wasserstein gradient flows (2020)
  16. Loy, Nadia; Preziosi, Luigi: Kinetic models with non-local sensing determining cell polarization and speed according to independent cues (2020)
  17. Qiao, Zhonghua; Yang, Xuguang: A multiple-relaxation-time lattice Boltzmann method with beam-warming scheme for a coupled chemotaxis-fluid model (2020)
  18. Quenjel, El Houssaine; Saad, Mazen; Ghilani, Mustapha; Bessemoulin-Chatard, Marianne: Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations (2020)
  19. Shen, Jie; Xu, Jie: Unconditionally bound preserving and energy dissipative schemes for a class of Keller-Segel equations (2020)
  20. Zhao, Shubo; Xiao, Xufeng; Zhao, Jianping; Feng, Xinlong: A Petrov-Galerkin finite element method for simulating chemotaxis models on stationary surfaces (2020)

1 2 3 ... 7 8 9 next