Matlab® implementation of the JDQZ algorithm. The JDQZ algorithm can be used for computing a few selected eigenvalues with some desirable property together with the associated eigenvectors of a matrix pencil A-lambda*B. The matrices can be real or complex, Hermitian or non-Hermitian, .... The algorithm is effective especially in case A and B are sparse and of large size. The Jacobi-Davidson method is used to compute a partial generalized Schur decomposition of the pair (A,B). The decomposition leads to the wanted eigenpairs.

References in zbMATH (referenced in 600 articles , 1 standard article )

Showing results 1 to 20 of 600.
Sorted by year (citations)

1 2 3 ... 28 29 30 next

  1. Cavaliere, F.; Zlotnik, S.; Sevilla, R.; Larrayoz, X.; Díez, P.: Nonintrusive parametric solutions in structural dynamics (2022)
  2. Feng, Bo; Wu, Gang: On a new variant of Arnoldi method for approximation of eigenpairs (2022)
  3. Lampe, Jörg; Voss, Heinrich: A survey on variational characterizations for nonlinear eigenvalue problems (2022)
  4. Liang, Qigang; Xu, Xuejun: A two-level preconditioned Helmholtz-Jacobi-Davidson method for the Maxwell eigenvalue problem (2022)
  5. Nedzhibov, Gyurhan H.: The Weierstrass iterative method as a Petrov-Galerkin method for solving eigenvalue problem (2022)
  6. Petkov, Petko H.; Konstantinov, Mihail M.: The numerical Jordan form (2022)
  7. Rontsis, Nikitas; Goulart, Paul; Nakatsukasa, Yuji: Efficient semidefinite programming with approximate ADMM (2022)
  8. Tropp, Joel A.: Randomized block Krylov methods for approximating extreme eigenvalues (2022)
  9. Baglama, James; Bella, Tom; Picucci, Jennifer: Hybrid iterative refined method for computing a few extreme eigenpairs of a symmetric matrix (2021)
  10. Baglama, James; Bella, Tom; Picucci, Jennifer: Hybrid iterative refined method for computing a few extreme eigenpairs of a symmetric matrix (2021)
  11. Breiding, Paul; Vannieuwenhoven, Nick: The condition number of Riemannian approximation problems (2021)
  12. Chang, Wei-Chen; Li, Tiexiang; Lin, Wen-Wei; Wang, Jenn-Nan: Computation of the interior transmission eigenvalues for elastic scattering in an inhomogeneous medium containing an obstacle (2021)
  13. Huang, Jinzhi; Jia, Zhongxiao: On choices of formulations of computing the generalized singular value decomposition of a large matrix pair (2021)
  14. Huang, Rong: Accurate computation of generalized eigenvalues of regular SR-BP pairs (2021)
  15. Huang, Tsung-Ming; Liao, Weichien; Lin, Wen-Wei; Wang, Weichung: An efficient contour integral based eigensolver for 3D dispersive photonic crystal (2021)
  16. Li, Quhao; Sigmund, Ole; Jensen, Jakob Søndergaard; Aage, Niels: Reduced-order methods for dynamic problems in topology optimization: a comparative study (2021)
  17. Miao, Cun-Qiang; Wu, Wen-Ting: On relaxed filtered Krylov subspace method for non-symmetric eigenvalue problems (2021)
  18. Yue, Su-Feng; Zhang, Jian-Jun: An extended shift-invert residual Arnoldi method (2021)
  19. Ahmad, Sk. Safique; Kanhya, Prince: Structured perturbation analysis of sparse matrix pencils with (s)-specified eigenpairs (2020)
  20. Aishima, Kensuke: Convergence proof of the harmonic Ritz pairs of iterative projection methods with restart strategies for symmetric eigenvalue problems (2020)

1 2 3 ... 28 29 30 next