JDQZ

Matlab® implementation of the JDQZ algorithm. The JDQZ algorithm can be used for computing a few selected eigenvalues with some desirable property together with the associated eigenvectors of a matrix pencil A-lambda*B. The matrices can be real or complex, Hermitian or non-Hermitian, .... The algorithm is effective especially in case A and B are sparse and of large size. The Jacobi-Davidson method is used to compute a partial generalized Schur decomposition of the pair (A,B). The decomposition leads to the wanted eigenpairs.


References in zbMATH (referenced in 600 articles , 1 standard article )

Showing results 521 to 540 of 600.
Sorted by year (citations)

previous 1 2 3 ... 25 26 27 28 29 30 next

  1. Simoncini, V.: Algebraic formulations for the solution of the nullspace-free eigenvalue problem using the inexact Shift-and-Invert Lanczos method. (2003)
  2. Simoncini, Valeria; Szyld, Daniel B.: Theory of inexact Krylov subspace methods and applications to scientific computing (2003)
  3. Sleijpen, Gerard L. G.; van den Eshof, Jasper: On the use of harmonic Ritz pairs in approximating internal eigenpairs (2003)
  4. Toselli, Andrea; Vasseur, Xavier: A numerical study on Neumann-Neumann and FETI methods for (hp) approximations on geometrically refined boundary layer meshes in two dimensions. (2003)
  5. Wang, Weichung; Hwang, Tsung-Min; Lin, Wen-Wei; Liu, Jinn-Liang: Numerical methods for semiconductor heterostructures with band nonparabolicity (2003)
  6. Absil, P.-A.; Mahony, R.; Sepulchre, R.; Van Dooren, P.: A Grassmann--Rayleigh quotient iteration for computing invariant subspaces (2002)
  7. Apel, Thomas; Mehrmann, Volker; Watkins, David: Structured eigenvalue methods for the computation of corner singularities in 3D anisotropic elastic structures (2002)
  8. Bai, Zhaojun: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems (2002)
  9. Bai, Zhaojun; Golub, Gene: Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation (2002)
  10. Bergamaschi, Luca; Putti, Mario: Numerical comparison of iterative eigensolvers for large sparse symmetric positive definite matrices (2002)
  11. Brandts, J. H.: Matlab code for sorting real Schur forms. (2002)
  12. Dumas, J.-G.; Gautier, T.; Giesbrecht, M.; Giorgi, P.; Hovinen, B.; Kaltofen, E.; Saunders, B. D.; Turner, W. J.; Villard, G.: LinBox: A generic library for exact linear algebra (2002)
  13. Golub, Gene H.; Ye, Qiang: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems (2002)
  14. Graham, Ivan G.; Spence, Alastair; Vainikko, Eero: Parallel iterative methods for Navier-Stokes equations and application to stability assessment (2002)
  15. Hochstenbach, Michiel E.; Plestenjak, Bor: A Jacobi--Davidson type method for a right definite two-parameter eigenvalue problem (2002)
  16. Jia, Zhongxiao: The refined harmonic Arnoldi method and an implicitly restarted refined algorithm for computing interior eigenpairs of large matrices (2002)
  17. Liang, Jing; Ding, Zhi: Multiuser channel estimation from higher-order statistical matrix pencil (2002)
  18. Lundström, Eva; Eldén, Lars: Adaptive eigenvalue computations using Newton’s method on the Grassmann manifold (2002)
  19. Notay, Y.: Combination of Jacobi--Davidson and conjugate gradients for the partial symmetric eigenproblem. (2002)
  20. Sorensen, D. C.; Antoulas, A. C.: The Sylvester equation and approximate balanced reduction (2002)

previous 1 2 3 ... 25 26 27 28 29 30 next