Matlab® implementation of the JDQZ algorithm. The JDQZ algorithm can be used for computing a few selected eigenvalues with some desirable property together with the associated eigenvectors of a matrix pencil A-lambda*B. The matrices can be real or complex, Hermitian or non-Hermitian, .... The algorithm is effective especially in case A and B are sparse and of large size. The Jacobi-Davidson method is used to compute a partial generalized Schur decomposition of the pair (A,B). The decomposition leads to the wanted eigenpairs.

References in zbMATH (referenced in 610 articles , 1 standard article )

Showing results 581 to 600 of 610.
Sorted by year (citations)

previous 1 2 3 ... 28 29 30 31 next

  1. Engelborghs, Koen; Roose, Dirk: Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations (1999)
  2. Fattebert, Jean-Luc: Finite difference schemes and block Rayleigh quotient iteration for electronic structure calculations on composite grids (1999)
  3. Fokkema, Diederik R.; Sleijpen, Gerard L. G.; van der Vorst, Henk A.: Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils (1999)
  4. Jia, Zhongxiao: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm (1999)
  5. Jia, Zhongxiao: Composite orthogonal projection methods for large matrix eigenproblems (1999)
  6. Baglama, J.; Calvetti, D.; Reichel, L.; Ruttan, A.: Computation of a few small eigenvalues of a large matrix with application to liquid crystal modeling (1998)
  7. Edelman, Alan; Arias, Tomás A.; Smith, Steven T.: The geometry of algorithms with orthogonality constraints (1998)
  8. Fokkema, Diederik R.; Sleijpen, Gerard L. G.; Van der Vorst, Henk A.: Accelerated inexact Newton schemes for large systems of nonlinear equations (1998)
  9. Grimme, E.; Gallivan, K. A.; Van Dooren, P. M.: On some recent developments in projection-based model reduction (1998)
  10. Lehoucq, R. B.; Meerbergen, Karl: Using generalized Cayley transformations within an inexact rational Krylov sequence method (1998)
  11. Morgan, R. B.; Zeng, M.: Harmonic projection methods for large non-symmetric eigenvalue problems (1998)
  12. Ruhe, Axel: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils (1998)
  13. Sleijpen, Gerard L. G.; van der Horst, Henk A.; Meijerbrink, Ellen: Efficient expansion of subspaces in the Jacobi-Davidson method for standard and generalized eigenproblems (1998)
  14. Sleijpen, Gerard L. G.; Van der Vorst, Henk A.: A Jacobi-Davidson iteration method for linear eigenvalue problems (1998)
  15. Sorensen, D. C.: Truncated (QZ) methods for large scale generalized eigenvalue problems (1998)
  16. Sorensen, D. C.; Yang, C.: A truncated RQ iteration for large scale eigenvalue calculations (1998)
  17. Stathopoulos, Andreas; Saad, Yousef; Wu, Kesheng: Dynamic thick restarting of the Davidson, and the implicitly restarted Arnoldi methods (1998)
  18. Wu, Kesheng; Saad, Yousef; Stathopoulos, Andreas: Inexact Newton preconditioning techniques for large symmetric eigenvalue problems (1998)
  19. Zhang, T.; Golub, G. H.; Law, K. H.: Eigenvalue perturbation and generalized Krylov subspace method (1998)
  20. de Samblanx, G.; Meerbergen, K.; Bultheel, A.: The implicit application of a rational filter in the RKS method (1997)

previous 1 2 3 ... 28 29 30 31 next