advanpix: Multiprecision Computing Toolbox for MATLAB. The Multiprecision Computing Toolbox is the MATLAB extension for computing with arbitrary precision. The toolbox equips MATLAB with a new multiple precision floating-point numeric type and extensive set of mathematical functions that are capable of computing with arbitrary precision. The multiprecision numbers and matrices can be seamlessly used in place of the built-in double entities following standard MATLAB syntax rules. As a result, existing MATLAB programs can be converted to run with arbitrary precision with no (or minimal) changes to source code. Quadruple precision computations (compliant with IEEE 754-2008) are supported as a special case.

References in zbMATH (referenced in 44 articles )

Showing results 1 to 20 of 44.
Sorted by year (citations)

1 2 3 next

  1. Al-Mohy, Awad H.; Higham, Nicholas J.; Liu, Xiaobo: Arbitrary precision algorithms for computing the matrix cosine and its Fréchet derivative (2022)
  2. Boito, Paola; Eidelman, Yuli; Gemignani, Luca: Computing the reciprocal of a (\phi)-function by rational approximation (2022)
  3. Abrahamsen, Dylan; Fornberg, Bengt: On the infinite order limit of Hermite-based finite difference schemes (2021)
  4. Ellison, Abe C.; Fornberg, Bengt: A parallel-in-time approach for wave-type PDEs (2021)
  5. Fornberg, Bengt: Improving the accuracy of the trapezoidal rule (2021)
  6. Higham, Nicholas J.; Liu, Xiaobo: A multiprecision derivative-free Schur-Parlett algorithm for computing matrix functions (2021)
  7. Rauch, Reuben; Trummer, Manfred R.; Williams, J. F.: A spectral collocation method for mixed functional differential equations (2021)
  8. Billingham, John: Slow travelling wave solutions of the nonlocal Fisher-KPP equation (2020)
  9. Cayama, Jorge; Cuesta, Carlota M.; de la Hoz, Francisco: Numerical approximation of the fractional Laplacian on (\mathbbR) using orthogonal families (2020)
  10. Elsworth, Steven; Güttel, Stefan: The block rational Arnoldi method (2020)
  11. Go, Myeong-Seok; Lim, Jae Hyuk; Kim, Jin-Gyun; Hwang, Ki-Ryoung: A family of Craig-Bampton methods considering residual mode compensation (2020)
  12. Hervella-Nieto, Luis; López-Pérez, Paula M.; Prieto, Andrés: Robustness and dispersion analysis of the partition of unity finite element method applied to the Helmholtz equation (2020)
  13. Maxwell, Peter; Ellingsen, Simen Å.: Path-following methods for calculating linear surface wave dispersion relations on vertical shear flows (2020)
  14. Ogita, Takeshi; Aishima, Kensuke: Iterative refinement for singular value decomposition based on matrix multiplication (2020)
  15. Rump, Siegfried M.: On recurrences converging to the wrong limit in finite precision and some new examples (2020)
  16. Xu, Yiran; Li, Jingye; Chen, Xiaohong; Pang, Guofei: Solving fractional Laplacian visco-acoustic wave equations on complex-geometry domains using Grünwald-formula based radial basis collocation method (2020)
  17. Carbone, Maurizio; Iovieno, Michele: Application of the nonuniform fast Fourier transform to the direct numerical simulation of two-way coupled particle laden flows (2019)
  18. Chen, Zheng; Hauck, Cory D.: Multiscale convergence properties for spectral approximations of a model kinetic equation (2019)
  19. Courtier, N. E.; Foster, J. M.; O’Kane, S. E. J.; Walker, A. B.; Richardson, G.: Systematic derivation of a surface polarisation model for planar perovskite solar cells (2019)
  20. Fornberg, Bengt; Reeger, Jonah A.: An improved Gregory-like method for 1-D quadrature (2019)

1 2 3 next