SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization We describe the development and testing of a metaheuristic procedure, based on the scatter-search methodology, for the problem of approximating the efficient frontier of nonlinear multiobjective optimization problems with continuous variables. Recent applications of scatter search have shown its merit as a global optimization technique for single-objective problems. However, the application of scatter search to multiobjective optimization problems has not been fully explored in the literature. We test the proposed procedure on a suite of problems that have been used extensively in multiobjective optimization. Additional tests are performed on instances that are an extension of those considered classic. The tests indicate that our adaptation of scatter search is a viable alternative for multiobjective optimization.

This software is also peer reviewed by journal TOMS.

References in zbMATH (referenced in 18 articles , 1 standard article )

Showing results 1 to 18 of 18.
Sorted by year (citations)

  1. López-Sánchez, A. D.; Sánchez-Oro, J.; Laguna, M.: A new scatter search design for multiobjective combinatorial optimization with an application to facility location (2021)
  2. Hale, Joshua Q.; Zhu, Helin; Zhou, Enlu: Domination measure: a new metric for solving multiobjective optimization (2020)
  3. Palomo-Martínez, Pamela J.; Salazar-Aguilar, M. Angélica: The bi-objective traveling purchaser problem with deliveries (2019)
  4. Drexl, Michael; Schneider, Michael: A survey of variants and extensions of the location-routing problem (2015)
  5. Mladineo, Marko; Veža, Ivica; Gjeldum, Nikola: Single-objective and multi-objective optimization using the HUMANT algorithm (2015)
  6. Martínez-Salazar, Iris Abril; Molina, Julian; Ángel-Bello, Francisco; Gómez, Trinidad; Caballero, Rafael: Solving a bi-objective transportation location routing problem by metaheuristic algorithms (2014)
  7. Salazar-Aguilar, M. Angélica; Ríos-Mercado, Roger Z.: Multiobjective scatter search for a commercial territory design problem (2012)
  8. Vlah Jerić, Silvija; Figueira, José Rui: Multi-objective scheduling and a resource allocation problem in hospitals (2012) ioport
  9. Zhang, Tao; Chaovalitwongse, W. A.; Zhang, Yuejie: Scatter search for the stochastic travel-time vehicle routing problem with simultaneous pick-ups and deliveries (2012)
  10. Gómez, T.; Hernández, M.; Molina, J.; León, M. A.; Aldana, E.; Caballero, R.: A multiobjective model for forest planning with adjacency constraints (2011)
  11. Carazo, Ana F.; Gómez, Trinidad; Molina, Julián; Hernández-Díaz, Alfredo G.; Guerrero, Flor M.; Caballero, Rafael: Solving a comprehensive model for multiobjective project portfolio selection (2010)
  12. Hernandez-Diaz, Alfredo G.; Coello, Carlos A.; Perez, Fatima; Caballero, Rafael; Molina, Julian: Using a gradient based method to seed an EMO algorithm (2010)
  13. Santana-Quintero, Luis V.; Hernández-Díaz, Alfredo G.; Molina, Julián; Coello Coello, Carlos A.; Caballero, Rafael: DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems (2010)
  14. Urli, Bruno; Terrien, François: Project portfolio selection model, a realistic approach (2010)
  15. Baños, R.; Gil, C.; Reca, J.; Martínez, J.: Implementation of scatter search for multi-objective optimization: a comparative study (2009)
  16. Miettinen, Kaisa; Molina, Julián; González, Mercedes; Hernández-Díaz, Alfredo; Caballero, Rafael: Using box indices in supporting comparison in multiobjective optimization (2009)
  17. Molina, Julian; Laguna, Manuel; Martí, Rafael; Caballero, Rafael: SSPMO: a scatter tabu search procedure for non-linear multiobjective optimization (2007)
  18. Gandibleux, Xavier; Ehrgott, Matthias: 1984--2004 -- 20 years of multiobjective metaheuristics. But what about the solution of combinatorial problems with multiple objectives? (2005)