Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

RankAggreg

R package RankAggreg: Weighted rank aggregation. This package performs aggregation of ordered lists based on the ranks using several different algorithms: Borda count, Cross-Entropy Monte Carlo algorithm, Genetic algorithm, and a brute force algorithm (for small problems)

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • PageRank algorithm
  • loss curves
  • sensitivity analysis
  • pairwise comparisons
  • meta-learning
  • algorithm selection
  • incomplete rankings
  • rank aggregation
  • ranking of algorithms
  • regression
  • active testing
  • recommendation systems
  • mean interval loss
  • subgroup ranking
  • average ranking
  • signaling pathway
  • bagging
  • Markov chain Monte Carlo
  • preference learning with uncertainty
  • model selection
  • ranking aggregation
  • decision analysis
  • linear algebra
  • robustness
  • average ranking distance criterion (ARDC)
  • identifiability analysis
  • ranking football teams

  • URL: cran.r-project.org/web...
  • Code
  • InternetArchive
  • Manual: cran.r-project.org/web...
  • Authors: Vasyl Pihur, Somnath Datta, Susmita Datta
  • Dependencies: R

  • Add information on this software.


  • Related software:
  • R
  • SBML-SAT
  • OpenML
  • pls
  • BioBayes
  • SOSlib
  • Label.switching
  • igraph
  • SUNDIALS
  • WEKA
  • Show more...
  • BioModels
  • e1071
  • relations
  • sets
  • AdaBoost.MH
  • TopKLists
  • PerMallows
  • OEIS
  • BradleyTerry2
  • spls
  • Show less...

References in zbMATH (referenced in 7 articles )

Showing results 1 to 7 of 7.
y Sorted by year (citations)

  1. Abdulrahman, Salisu Mamman; Brazdil, Pavel; van Rijn, Jan N.; Vanschoren, Joaquin: Speeding up algorithm selection using average ranking and active testing by introducing runtime (2018)
  2. Ding, Jiankun; Han, Deqiang; Yang, Yi: Iterative ranking aggregation using quality improvement of subgroup ranking (2018)
  3. Vitelli, Valeria; Sørensen, Øystein; Crispino, Marta; Frigessi, Arnoldo; Arjas, Elja: Probabilistic preference learning with the Mallows rank model (2018)
  4. Shah, Jasmit; Datta, Somnath; Datta, Susmita: A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics (2014)
  5. Rybiński, Mikołaj; Gambin, Anna: Model-based selection of the robust JAK-STAT activation mechanism (2012)
  6. Zack, Laurie; Lamb, Ron; Ball, Sarah: An application of Google’s PageRank to NFL rankings (2012)
  7. Pihur, Vasyl; Datta, Susmita; Datta, Somnath: Rankaggreg, an R package for weighted rank aggregation (2009) ioport

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 15 Linear and multilinear...
      • 62 Statistics
      • 65 Numerical analysis
      • 68 Computer science
      • 91 Game theory, economics,...
    • Other MSC classes
      • 92 Applications of...

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy