References in zbMATH (referenced in 59 articles , 1 standard article )

Showing results 1 to 20 of 59.
Sorted by year (citations)

1 2 3 next

  1. Dychko, H. M.; Maĭboroda, R. E.: A generalized Nadaraya-Watson estimator for observations obtained from a mixture (2020)
  2. Giordani, Paolo; Ferraro, Maria Brigida; Martella, Francesca: An introduction to clustering with R (2020)
  3. Lin, Zhixiang; Zamanighomi, Mahdi; Daley, Timothy; Ma, Shining; Wong, Wing Hung: Model-based approach to the joint analysis of single-cell data on chromatin accessibility and gene expression (2020)
  4. Murphy, Keefe; Murphy, Thomas Brendan: Gaussian parsimonious clustering models with covariates and a noise component (2020)
  5. Zheng, Chaowen; Wu, Yichao: Nonparametric estimation of multivariate mixtures (2020)
  6. Akakpo, Rexford M.; Xia, Michelle; Polansky, Alan M.: Frequentist inference in insurance ratemaking models adjusting for misrepresentation (2019)
  7. Blair R. Drummond, Christian J.G. Tessier, Mathieu F. Dextraze, Corrie J.B. daCosta: scbursts: An R package for analysis and sorting of single-channel bursts (2019) not zbMATH
  8. Comas-Cufí, Marc; Martín-Fernández, Josep A.; Mateu-Figueras, Glòria: Merging the components of a finite mixture using posterior probabilities (2019)
  9. Geissen, Eva-Maria; Hasenauer, Jan; Radde, Nicole E.: Inference of finite mixture models and the effect of binning (2019)
  10. Gualandi, Stefano; Toscani, Giuseppe: Human behavior and lognormal distribution. A kinetic description (2019)
  11. Lim, Johan; Yu, Donghyeon; Kuo, Hsun-Chih; Choi, Hyungwon; Walmsley, Scott: Truncated rank correlation (TRC) as a robust measure of test-retest reliability in mass spectrometry data (2019)
  12. Liu, Yiyi; Warren, Joshua L.; Zhao, Hongyu: A hierarchical Bayesian model for single-cell clustering using RNA-sequencing data (2019)
  13. Maĭboroda, R. E.; Navara, G. V.; Sugakova, O. V.: Orthogonal regression method for observations from a mixture (2019)
  14. Michael Hahsler; Matthew Piekenbrock; Derek Doran: dbscan: Fast Density-Based Clustering with R (2019) not zbMATH
  15. Nguyen, Hien; Yee, Yohan; McLachlan, Geoffrey; Lerch, Jason: False discovery rate control for grouped or discretely supported (p)-values with application to a neuroimaging study (2019)
  16. Young, Derek S.; Chen, Xi; Hewage, Dilrukshi C.; Nilo-Poyanco, Ricardo: Finite mixture-of-gamma distributions: estimation, inference, and model-based clustering (2019)
  17. Zagaris, Antonios: Data-informed modeling in the health sciences (2019)
  18. Alexander Foss; Marianthi Markatou: kamila: Clustering Mixed-Type Data in R and Hadoop (2018) not zbMATH
  19. Angelo Mazza; Antonio Punzo; Salvatore Ingrassia: flexCWM: A Flexible Framework for Cluster-Weighted Models (2018) not zbMATH
  20. Fop, Michael; Murphy, Thomas Brendan: Variable selection methods for model-based clustering (2018)

1 2 3 next