Multiple factor analysis (AFMULT package). Multiple Factor Analysis (MFA) studies several groups of variables (numerical and/or categorical) defined on the same set of individuals. MFA approaches this kind of data according to many points of view already used in others methods as: factor analysis in which groups of variables are weighted, canonical analysis, Procrustes analysis, STATIS, INDSCAL. In MFA, these points of view are considered in a unique framework. This paper presents the different outputs provided by MFA and an example about sensory analysis of wines.

References in zbMATH (referenced in 22 articles )

Showing results 1 to 20 of 22.
Sorted by year (citations)

1 2 next

  1. Derek Beaton: Generalized eigen, singular value, and partial least squares decompositions: The GSVD package (2020) arXiv
  2. Landaluce-Calvo, M. Isabel; Modroño-Herrán, Juan I.: Classification for time series data. An unsupervised approach based on reduction of dimensionality (2020)
  3. Corduas, Marcella; Ragozini, Giancarlo: A statistical procedure for representing state fragility and transition paths (2019)
  4. Borcard, Daniel; Gillet, François; Legendre, Pierre: Numerical ecology with R (2018)
  5. Tenenhaus, Michel; Tenenhaus, Arthur; Groenen, Patrick J. F.: Regularized generalized canonical correlation analysis: a framework for sequential multiblock component methods (2017)
  6. Marie Chavent, Vanessa Kuentz-Simonet, Amaury Labenne, J. Saracco: Multivariate analysis of mixed data: The PCAmixdata R package (2014) arXiv
  7. Abdi, Hervé; Williams, Lynne J.; Connolly, Andrew C.; Gobbini, M. Ida; Dunlop, Joseph P.; Haxby, James V.: Multiple Subject Barycentric Discriminant Analysis (MUSUBADA): how to assign scans to categories without using spatial normalization (2012)
  8. Bénasséni, Jacques; Dosse, Mohammed Bennani: Analyzing multiset data by the power STATIS-ACT method (2012)
  9. Liberati, Caterina; Mariani, Paolo: Banking customer satisfaction evaluation: a three-way factor perspective (2012)
  10. Lombardo, Rosaria; Amenta, Pietro; Vivien, Myrtille; Sabatier, Robert: Sensory analysis via multi-block multivariate additive PLS splines (2012)
  11. Collignon, O.; Monnez, J.-M.; Vallois, P.; Codreanu, F.; Renaudin, J.-M.; Kanny, G.; Brulliard, M.; Bihain, B. E.; Jacquenet, S.; Moneret-Vautrin, D.: Discriminant analyses of peanut allergy severity scores (2011)
  12. Thioulouse, Jean: Simultaneous analysis of a sequence of paired ecological tables: A comparison of several methods (2011)
  13. Abascal, Elena; Lautre, Ignacio García; Mallor, Fermín: Tracking customer portfolio composition: a factor analysis approach (2010)
  14. Henseler, Jörg: On the convergence of the partial least squares path modeling algorithm (2010)
  15. Zárraga, A.; Goitisolo, B.: Simultaneous analysis and multiple factor analysis for contingency tables: two methods for the joint study of contingency tables (2009)
  16. Bécue-Bertaut, Mónica; Pagès, Jérôme: Multiple factor analysis and clustering of a mixture of quantitative, categorical and frequency data (2008)
  17. Tenenhaus, Michel; Vinzi, Vincenzo Esposito; Chatelin, Yves-Marie; Lauro, Carlo: PLS path modeling (2005)
  18. Bécue-Bertaut, Mónica; Pagès, Jérôme: A principal axes method for comparing contingency tables: MFACT (2004)
  19. García Lautre, Ignacio; Abascal Fernández, Elena: A methodology for measuring latent variables based on multiple factor analysis (2004)
  20. Vivien, Myrtille; Sabatier, Robert: A generalization of STATIS-ACT strategy: DO-ACT for two multiblocks tables (2004)

1 2 next