Schwarz-Christoffel

Algorithm 756: a MATLAB toolbox for Schwarz-Christoffel mapping. The Schwarz-Christoffel transformation and its variations yield formulas for conformal maps from standard regions to the interiors or exteriors of possibly unbounded polygons. Computations involving these maps generally require a computer, and although the numerical aspects of these transformations have been studied, there are few software implementations that are widely available and suited for general use. The Schwarz-Christoffel Toolbox for MATLAB is a new implementation of Schwarz-Christoffel formulas for maps from the disk, half-plane, strip, and rectangle domains to polygon interiors, and from the disk to polygon exteriors. The toolbox, written entirely in the MATLAB script language, exploits the high-level functions, interactive environment, visualization tools, and graphical user interface elements supplied by current versions of MATLAB, and is suitable for use both as a standalone tool and as a library for applications written in MATLAB, Fortran, or C. Several examples and simple applications are presented to demonstrate the toolbox’s capabilities.


References in zbMATH (referenced in 239 articles )

Showing results 181 to 200 of 239.
Sorted by year (citations)

previous 1 2 3 ... 8 9 10 11 12 next

  1. Hyvönen, Nuutti; Hakula, Harri; Pursiainen, Sampsa: Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography (2007)
  2. Palmberg, N.: Weighted composition operators with closed range (2007)
  3. Porter, R. Michael: History and recent developments in techniques for numerical conformal mapping (2007)
  4. Ransford, Thomas; Rostand, Jérémie: Computation of capacity (2007)
  5. Bornemann, Folkmar; Laurie, Dirk; Wagon, Stan; Waldvogel, Jörg: The SIAM 100-Digit Challenge: a study in high-accuracy numerical computing. With Foreword by David H. Bailey. Translated from the English. (2006)
  6. Costamagma, E.; Di Barba, P.; Savini, A.: Synthesis of boundary conditions in a subdomain using the numerical Schwarz-Christoffel transformation for the field analysis (2006)
  7. DeLillo, Thomas K.: Schwarz-Christoffel mapping of bounded, multiply connected domains (2006)
  8. DeLillo, Thomas K.; Driscoll, Tobin A.; Elcrat, Alan R.; Pfaltzgraff, John A.: Computation of multiply connected Schwarz-Christoffel maps for exterior domains (2006)
  9. Elcrat, Alan R.; Miller, Kenneth G.: Free surface waves in equilibrium with a vortex (2006)
  10. Hadjidimos, A.; Stylianopoulos, N. S.: Optimal semi-iterative methods for complex SOR with results from potential theory (2006)
  11. Marković, Miroslav; Jufer, Marcel; Perriard, Yves: A square magnetic circuit analysis using Schwarz--Christoffel mapping (2006)
  12. Sharon, E.; Mumford, D.: 2D-shape analysis using conformal mapping (2006)
  13. Tee, T. W.; Trefethen, Lloyd N.: A rational spectral collocation method with adaptively transformed Chebyshev grid points (2006)
  14. Atkinson, K.; Sommariva, A.: On the numerical solution of some semilinear elliptic problems. II (2005)
  15. Avila, Artur; Damanik, David: Generic singular spectrum for ergodic Schrödinger operators (2005)
  16. Beattie, Christopher A.; Embree, Mark; Sorensen, D. C.: Convergence of polynomial restart Krylov methods for eigenvalue computations (2005)
  17. Beckermann, Bernhard: Numerical range, GMRES and Faber polynomials. (2005)
  18. Driscoll, Tobin A.: Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB (2005)
  19. Howison, Sam: Practical applied mathematics. Modelling, analysis, approximation (2005)
  20. Jenkinson, Oliver; Pollicott, Mark: Orthonormal expansions of invariant densities for expanding maps (2005)

previous 1 2 3 ... 8 9 10 11 12 next