References in zbMATH (referenced in 38 articles )

Showing results 1 to 20 of 38.
Sorted by year (citations)

1 2 next

  1. Chernykh, Igor; Kulikov, Igor; Tutukov, Alexander: Hydrogen-helium chemical and nuclear galaxy collision: hydrodynamic simulations on AVX-512 supercomputers (2021)
  2. Keppens, Rony; Teunissen, Jannis; Xia, Chun; Porth, Oliver: \textttMPI-AMRVAC: a parallel, grid-adaptive PDE toolkit (2021)
  3. Lopes, Müller Moreira; Domingues, Margarete Oliveira; Deiterding, Ralf; Mendes, Odim: Magnetohydrodynamics adaptive solvers in the AMROC framework for space plasma applications (2021)
  4. A. Brandenburg, A. Johansen, P. A. Bourdin, W. Dobler, W. Lyra, M. Rheinhardt, S. Bingert, N. E. L. Haugen, A. Mee, F. Gent, N. Babkovskaia, C.-C. Yang, T. Heinemann, B. Dintrans, D. Mitra, S. Candelaresi, J. Warnecke, P. J. Käpylä, A. Schreiber, P. Chatterjee, M. J. Käpylä, X.-Y. Li, J. Krüger, J. R. Aarnes, G. R. Sarson, J. S. Oishi, J. Schober, R. Plasson, C. Sandin, E. Karchniwy, L. F. S. Rodrigues, A. Hubbard, G. Guerrero, A. Snodin, I. R. Losada, J. Pekkilä, C. Qian (The Pencil Code Collaboration): The Pencil Code, a modular MPI code for partial differential equations and particles: multipurpose and multiuser-maintained (2020) arXiv
  5. Kitamura, Keiichi; Mamashita, Tomohiro; Ryu, Dongsu: SLAU2 applied to two-dimensional, ideal magnetohydrodynamics simulations (2020)
  6. Kozak, Y.; Dammati, S. S.; Bravo, L. G.; Hamlington, P. E.; Poludnenko, A. Y.: WENO interpolation for Lagrangian particles in highly compressible flow regimes (2020)
  7. Wang, Liang; Hakim, Ammar H.; Ng, Jonathan; Dong, Chuanfei; Germaschewski, Kai: Exact and locally implicit source term solvers for multifluid-Maxwell systems (2020)
  8. Fujimoto, Takeshi R.; Kawasaki, Taro; Kitamura, Keiichi: Canny-edge-detection/Rankine-Hugoniot-conditions unified shock sensor for inviscid and viscous flows (2019)
  9. Zhang, C.; Xiang, G. M.; Wang, B.; Hu, X. Y.; Adams, N. A.: A weakly compressible SPH method with WENO reconstruction (2019)
  10. Chetverushkin, B. N.; Saveliev, A. V.; Saveliev, V. I.: A quasi-gasdynamic model for the description of magnetogasdynamic phenomena (2018)
  11. Felker, Kyle Gerard; Stone, James M.: A fourth-order accurate finite volume method for ideal MHD via upwind constrained transport (2018)
  12. Kulikov, I. M.; Chernykh, I. G.; Glinskiy, B. M.; Protasov, V. A.: An efficient optimization of Hll method for the second generation of Intel Xeon Phi processor (2018)
  13. Kulikov, I. M.; Chernykh, I. G.; Tutukov, A. V.: A new parallel Intel Xeon Phi hydrodynamics code for massively parallel supercomputers (2018)
  14. Basting, Melanie; Kuzmin, Dmitri: An FCT finite element scheme for ideal MHD equations in 1D and 2D (2017)
  15. Frontiere, Nicholas; Raskin, Cody D.; Owen, J. Michael: CRKSPH - A conservative reproducing kernel smoothed particle hydrodynamics scheme (2017)
  16. Lee, Dongwook; Faller, Hugues; Reyes, Adam: The piecewise cubic method (PCM) for computational fluid dynamics (2017)
  17. Rosen, A. L.; Krumholz, M. R.; Oishi, J. S.; Lee, A. T.; Klein, R. I.: Hybrid adaptive ray-moment method (HARM(^2)): A highly parallel method for radiation hydrodynamics on adaptive grids (2017)
  18. Forbes, Lawrence K.: A simple model of magnetic fields associated with outflow from a source; new orthogonal polynomials (2016)
  19. Hirabayashi, Kota; Hoshino, Masahiro; Amano, Takanobu: A new framework for magnetohydrodynamic simulations with anisotropic pressure (2016)
  20. Tricco, Terrence S.; Price, Daniel J.; Bate, Matthew R.: Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds (2016)

1 2 next