A parallel radial basis function interpolation method for unstructured dynamic meshes. A radial basis function (RBF) interpolation method is implemented to be applied in computational fluid dynamics (CFDs) problems with dynamic meshes. The method has been tested with two challenging examples of dynamic meshing, the deformation of a pitching airfoil and a three-dimensional movement of a sphere, both discretized over viscous grids of around 5M control volumes. The work also includes a qualitative comparison of the RBF interpolation and the classical spring analogy formulations, which asserts that the new approach is far less costly and, besides, can achieve a good performance in preserving the mesh quality. In addition, the dynamic mesh adaptation has been coupled with a CFD solver, what has been validated on a benchmark problem consisting on a duct with a moving indentation. Finally, it is analyzed the parallel performance of the algorithm for the case of the deformable sphere, pointing out some key aspects that must be considered in order to improve the parallelization.

References in zbMATH (referenced in 16 articles )

Showing results 1 to 16 of 16.
Sorted by year (citations)

  1. Afzal, Asif; Ansari, Zahid; Ramis, M. K.: Parallel performance analysis of coupled heat and fluid flow in parallel plate channel using CUDA (2020)
  2. Naseri, Alireza; Totounferoush, Amin; González, Ignacio; Mehl, Miriam; Pérez-Segarra, Carlos David: A scalable framework for the partitioned solution of fluid-structure interaction problems (2020)
  3. Muela, J.; Borrell, R.; Ventosa-Molina, J.; Jofre, L.; Lehmkuhl, O.; Pérez-Segarra, C. D.: A dynamic load balancing method for the evaluation of chemical reaction rates in parallel combustion simulations (2019)
  4. Cajas, J. C.; Houzeaux, G.; Vázquez, M.; García, M.; Casoni, E.; Calmet, H.; Artigues, A.; Borrell, R.; Lehmkuhl, O.; Pastrana, D.; Yáñez, D. J.; Pons, R.; Martorell, J.: Fluid-structure interaction based on HPC multicode coupling (2018)
  5. Krasnopolsky, B. I.: Optimal strategy for modelling turbulent flows with ensemble averaging on high performance computing systems (2018)
  6. Oyarzun, Guillermo; Borrell, Ricard; Gorobets, Andrey; Oliva, Assensi: Portable implementation model for CFD simulations. Application to hybrid CPU/GPU supercomputers (2017)
  7. Borrell, R.; Chiva, J.; Lehmkuhl, O.; Oyarzun, G.; Rodríguez, I.; Oliva, A.: Optimising the termofluids CFD code for petascale simulations (2016)
  8. Coulier, Pieter; Darve, Eric: Efficient mesh deformation based on radial basis function interpolation by means of the inverse fast multipole method (2016)
  9. Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.: Adaptive radial basis function mesh deformation using data reduction (2016)
  10. Antepara, O.; Lehmkuhl, O.; Borrell, R.; Chiva, J.; Oliva, A.: Parallel adaptive mesh refinement for large-eddy simulations of turbulent flows (2015)
  11. Jofre, Lluís; Borrell, Ricard; Lehmkuhl, Oriol; Oliva, Assensi: Parallel load balancing strategy for volume-of-fluid methods on 3-D unstructured meshes (2015)
  12. Biancolini, M. E.; Viola, I. M.; Riotte, M.: Sails trim optimisation using CFD and RBF mesh morphing (2014)
  13. Jofre, Lluís; Lehmkuhl, Oriol; Castro, Jesús; Oliva, Assensi: A 3-D volume-of-fluid advection method based on cell-vertex velocities for unstructured meshes (2014)
  14. Oyarzun, G.; Borrell, R.; Gorobets, A.; Oliva, A.: MPI-CUDA sparse matrix-vector multiplication for the conjugate gradient method with an approximate inverse preconditioner (2014)
  15. Estruch, O.; Lehmkuhl, O.; Borrell, R.; Pérez Segarra, C. D.; Oliva, A.: A parallel radial basis function interpolation method for unstructured dynamic meshes (2013)
  16. Tuttafesta, Michele; Colonna, Gianpiero; Pascazio, Giuseppe: Computing unsteady compressible flows using Roe’s flux-difference splitting scheme on GPUs (2013)

Further publications can be found at: http://www.termofluids.com/about-us/publications/