preCICE

preCICE (Precise Code Interaction Coupling Environment) is a coupling library for partitioned multi-physics simulations, including, but not restricted to fluid-structure interaction and conjugate heat transfer simulations. Partitioned means that preCICE couples existing programs (solvers) capable of simulating a subpart of the complete physics involved in a simulation. This allows for the high flexibility that is needed to keep a decent time-to-solution for complex multi-physics scenarios. preCICE runs efficiently on a wide spectrum of systems, from low-end workstations up to complete compute clusters and has proven scalability on 10000s of MPI Ranks. The software offers methods for transient equation coupling, communication means, and data mapping schemes. preCICE is written in C++ and offers bindings for C, Fortran, Matlab, and Python. Ready-to-use adapters for well-known commercial and open-source solvers, such as OpenFOAM, deal.II, FEniCS, SU2, or CalculiX, are available. Due to the minimally-invasive approach of preCICE, adapters for in-house codes can be implemented and validated in only a few weeks.


References in zbMATH (referenced in 27 articles , 1 standard article )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Schmidt, Patrick; Jaust, Alexander; Steeb, Holger; Schulte, Miriam: Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach (2022)
  2. Yang, Ming; Soghrati, Soheil: On the performance of domain decomposition methods for modeling heterogenous materials (2022)
  3. Arndt, Daniel; Bangerth, Wolfgang; Blais, Bruno; Fehling, Marc; Gassmöller, Rene; Heister, Timo; Heltai, Luca; Köcher, Uwe; Kronbichler, Martin; Maier, Matthias; Munch, Peter; Pelteret, Jean-Paul; Proell, Sebastian; Simon, Konrad; Turcksin, Bruno; Wells, David; Zhang, Jiaqi: The \textttdeal.II library, Version 9.3 (2021)
  4. Benjamin Rodenberg, Ishaan Desai, Richard Hertrich, Alexander Jaust, Benjamin Uekermann: FEniCS-preCICE: Coupling FEniCS to other simulation software (2021) not zbMATH
  5. Ghantasala, Aditya; Najian Asl, Reza; Geiser, Armin; Brodie, Andrew; Papoutsis, Efthymios; Bletzinger, Kai-Uwe: Realization of a framework for simulation-based large-scale shape optimization using vertex morphing (2021)
  6. Koch, Timo; Gläser, Dennis; Weishaupt, Kilian; Ackermann, Sina; Beck, Martin; Becker, Beatrix; Burbulla, Samuel; Class, Holger; Coltman, Edward; Emmert, Simon; Fetzer, Thomas; Grüninger, Christoph; Heck, Katharina; Hommel, Johannes; Kurz, Theresa; Lipp, Melanie; Mohammadi, Farid; Scherrer, Samuel; Schneider, Martin; Seitz, Gabriele; Stadler, Leopold; Utz, Martin; Weinhardt, Felix; Flemisch, Bernd: DuMu(^\textx 3) -- an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling (2021)
  7. Kolb, Elena; Schäfer, Michael: Aeroacoustic simulation of flexible structures in low Mach number turbulent flows (2021)
  8. Krais, Nico; Beck, Andrea; Bolemann, Thomas; Frank, Hannes; Flad, David; Gassner, Gregor; Hindenlang, Florian; Hoffmann, Malte; Kuhn, Thomas; Sonntag, Matthias; Munz, Claus-Dieter: FLEXI: a high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws (2021)
  9. Fournier, Yvan: Massively parallel location and exchange tools for unstructured meshes (2020)
  10. Houzeaux, G.; Garcia-Gasulla, M.; Cajas, J. C.; Borrell, R.; Santiago, A.; Moulinec, C.; Vázquez, M.: Parallel multiphysics coupling: algorithmic and computational performances (2020)
  11. Jaust, Alexander; Weishaupt, Kilian; Mehl, Miriam; Flemisch, Bernd: Partitioned coupling schemes for free-flow and porous-media applications with sharp interfaces (2020)
  12. Lintermann, Andreas; Meinke, Matthias; Schröder, Wolfgang: Zonal flow solver (ZFS): a highly efficient multi-physics simulation framework (2020)
  13. Li, Yipeng; Chen, Qiao; Wang, Xuebin; Jiao, Xiangmin: WLS-ENO remap: superconvergent and non-oscillatory weighted least squares data transfer on surfaces (2020)
  14. Longshaw, S. M.; Pillai, R.; Gibelli, L.; Emerson, D. R.; Lockerby, D. A.: Coupling molecular dynamics and direct simulation Monte Carlo using a general and high-performance code coupling library (2020)
  15. Naseri, Alireza; Totounferoush, Amin; González, Ignacio; Mehl, Miriam; Pérez-Segarra, Carlos David: A scalable framework for the partitioned solution of fluid-structure interaction problems (2020)
  16. Cerquaglia, M. L.; Thomas, D.; Boman, R.; Terrapon, V.; Ponthot, J.-P.: A fully partitioned Lagrangian framework for FSI problems characterized by free surfaces, large solid deformations and displacements, and strong added-mass effects (2019)
  17. Schlottke-Lakemper, Michael; Niemöller, Ansgar; Meinke, Matthias; Schröder, Wolfgang: Efficient parallelization for volume-coupled multiphysics simulations on hierarchical Cartesian grids (2019)
  18. Timo Koch, Dennis Gläser, Kilian Weishaupt, Sina Ackermann, Martin Beck, Beatrix Becker, Samuel Burbulla, Holger Class, Edward Coltman, Simon Emmert, Thomas Fetzer, Christoph Grüninger, Katharina Heck, Johannes Hommel, Theresa Kurz, Melanie Lipp, Farid Mohammadi, Samuel Scherrer, Martin Schneider, Gabriele Seitz, Leopold Stadler, Martin Utz, Felix Weinhardt, Bernd Flemisch: DuMuX 3 -- an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling (2019) arXiv
  19. Cajas, J. C.; Houzeaux, G.; Vázquez, M.; García, M.; Casoni, E.; Calmet, H.; Artigues, A.; Borrell, R.; Lehmkuhl, O.; Pastrana, D.; Yáñez, D. J.; Pons, R.; Martorell, J.: Fluid-structure interaction based on HPC multicode coupling (2018)
  20. Farcas, Ionut-Gabriel; Uekermann, Benjamin; Neckel, Tobias; Bungartz, Hans-Joachim: Nonintrusive uncertainty analysis of fluid-structure interaction with spatially adaptive sparse grids and polynomial chaos expansion (2018)

1 2 next