Total FETI

Total FETI - an easier implementable variant of the FETI method for numerical solution of elliptic PDE. A new variant of the finite element tearing and interconnecting (FETI) method for numerical solution of elliptic partial differential equations (PDE) is presented. The basic idea is to simplify inversion of the stiffness matrices of subdomains by using Lagrange multipliers not only for gluing the subdomains along the auxiliary interfaces, but also for implementation of the Dirichlet boundary conditions. Results of numerical experiments are presented which indicate that the new method may be even more efficient than the original FETI.


References in zbMATH (referenced in 45 articles )

Showing results 21 to 40 of 45.
Sorted by year (citations)
  1. Baumgartner, Stefan; Heitzinger, Clemens: A one-level FETI method for the drift-diffusion-Poisson system with discontinuities at an interface (2013)
  2. Dostál, Zdeněk; Kozubek, Tomáš; Brzobohatý, Tomáš; Markopoulos, Alexandros; Vlach, Oldřich: Scalable TFETI with optional preconditioning by conjugate projector for transient frictionless contact problems of elasticity (2012)
  3. Dostál, Z.; Kozubek, T.; Markopoulos, A.; Brzobohatý, T.; Vondrák, V.; Horyl, P.: A theoretically supported scalable TFETI algorithm for the solution of multibody 3D contact problems with friction (2012)
  4. Haslinger, J.; Kučera, R.; Vlach, O.; Baniotopoulos, C. C.: Approximation and numerical realization of 3D quasistatic contact problems with Coulomb friction (2012)
  5. Kleiss, Stefan K.; Pechstein, Clemens; Jüttler, Bert; Tomar, Satyendra: IETI -- isogeometric tearing and interconnecting (2012)
  6. Kučera, R.; Kozubek, T.; Markopoulos, A.; Machalová, J.: On the Moore-Penrose inverse in solving saddle-point systems with singular diagonal blocks. (2012)
  7. Aubry, R.; Mut, F.; Dey, S.; Löhner, R.: Deflated preconditioned conjugate gradient solvers for linear elasticity (2011)
  8. Brzobohatý, T.; Dostál, Z.; Kozubek, T.; Kovář, P.; Markopoulos, A.: Cholesky decomposition with fixing nodes to stable computation of a generalized inverse of the stiffness matrix of a floating structure (2011)
  9. Dostál, Zdeněk; Kozubek, Tomáš; Markopoulos, Alexandros; Menšík, Martin: Cholesky decomposition of a positive semidefinite matrix with known kernel (2011)
  10. Pechstein, Clemens; Scheichl, Robert: Analysis of FETI methods for multiscale PDEs. II: Interface variation (2011)
  11. Sadowská, M.; Dostál, Z.; Kozubek, T.; Markopoulos, A.; Bouchala, J.: Scalable total BETI based solver for 3D multibody frictionless contact problems in mechanical engineering (2011)
  12. Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.: Total FETI based algorithm for contact problems with additional non-linearities (2010)
  13. Dostál, Z.; Kozubek, T.; Horyl, P.; Brzobohatý, T.; Markopoulos, A.: A scalable TFETI algorithm for two-dimensional multibody contact problems with friction (2010)
  14. Dostál, Z.; Kozubek, T.; Vondrák, V.; Brzobohatý, T.; Markopoulos, A.: Scalable TFETI algorithm for the solution of multibody contact problems of elasticity (2010)
  15. Vondrák, Vít; Kozubek, Tomáš; Markopoulos, Alexandros; Dostál, Zdeněk: Parallel solution of contact shape optimization problems based on total FETI domain decomposition method (2010)
  16. Bouchala, J.; Dostál, Z.; Sadowská, M.: Scalable total BETI based algorithm for 3D coercive contact problems of linear elastostatics (2009)
  17. Dostál, Zdeněk: Optimal quadratic programming algorithms. With applications to variational inequalities (2009)
  18. Gosselet, P.; Rixen, D. J.; Rey, C.: A domain decomposition strategy to efficiently solve structures containing repeated patterns (2009)
  19. Of, G.; Steinbach, O.: The all-floating boundary element tearing and interconnecting method (2009)
  20. Pechstein, Clemens: Boundary element tearing and interconnecting methods in unbounded domains (2009)