NumericalAlgebraicGeometry -- Numerical Algebraic Geometry. The package NumericalAlgebraicGeometry, also known as NAG4M2 (Numerical Algebraic Geometry for Macaulay2), implements methods of polynomial homotopy continuation to solve systems of polynomial equations and describe positive-dimensional complex algebraic varieties. A version of the package is distributed with the latest version of Macaulay2.

References in zbMATH (referenced in 14 articles )

Showing results 1 to 14 of 14.
Sorted by year (citations)

  1. Imbach, Rémi; Pouget, Marc; Yap, Chee: Clustering complex zeros of triangular systems of polynomials (2021)
  2. Kosta, Dimitra; Kubjas, Kaie: Maximum likelihood estimation of symmetric group-based models via numerical algebraic geometry (2019)
  3. Chen, Tianran; Lee, Tsung-Lin; Li, Tien-Yien: Mixed cell computation in HOM4ps (2017)
  4. Hauenstein, Jonathan D. (ed.); Sommese, Andrew J. (ed.): Foreword. What is numerical algebraic geometry? (2017)
  5. Leykin, Anton; Plaumann, Daniel: Determinantal representations of hyperbolic curves via polynomial homotopy continuation (2017)
  6. Hauenstein, Jonathan D.; Liddell, Alan C.: Certified predictor-corrector tracking for Newton homotopies (2016)
  7. Jensen, Anders; Leykin, Anton; Yu, Josephine: Computing tropical curves via homotopy continuation (2016)
  8. Martín del Campo, Abraham; Sottile, Frank: Experimentation in the Schubert calculus (2016)
  9. Bates, Daniel J.; Niemerg, Matthew: Using monodromy to avoid high precision in homotopy continuation (2014)
  10. Chen, Tianran; Lee, Tsung-Lin; Li, Tien-Yien: Hom4PS-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods (2014)
  11. Beltrán, Carlos; Leykin, Anton: Robust certified numerical homotopy tracking (2013)
  12. Beltrán, Carlos; Pardo, Luis Miguel: Fast linear homotopy to find approximate zeros of polynomial systems (2011)
  13. Anton Leykin: Numerical Algebraic Geometry for Macaulay2 (2009) arXiv
  14. Leykin, Anton: Numerical algebraic geometry for macaulay2 (2009) ioport