Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level. SAMURAI is a tool for the automated numerical evaluation of one-loop corrections to any scattering amplitudes within the dimensional-regularization scheme. It is based on the decomposition of the integrand according to the OPP-approach, extended to accommodate an implementation of the generalized $d$-dimensional unitarity-cuts technique, and uses a polynomial interpolation exploiting the Discrete Fourier Transform. SAMURAI can process integrands written either as numerator of Feynman diagrams or as product of tree-level amplitudes. We discuss some applications, among which the 6-and 8-photon scattering in QED, and the 6-quark scattering in QCD. SAMURAI has been implemented as a Fortran90 library, publicly available, and it could be a useful module for the systematic evaluation of the virtual corrections oriented towards automating next-to-leading order calculations relevant for the LHC phenomenology.

References in zbMATH (referenced in 27 articles )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Bourjaily, Jacob L.; Herrmann, Enrico; Langer, Cameron; Trnka, Jaroslav: Building bases of loop integrands (2020)
  2. Badger, Simon; Br√łnnum-Hansen, Christian; Hartanto, Heribertus Bayu; Peraro, Tiziano: Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case (2019)
  3. Bourjaily, Jacob L.; Herrmann, Enrico; Trnka, Jaroslav: Prescriptive unitarity (2017)
  4. Chen, Gang; Liu, Junyu; Xie, Ruofei; Zhang, Hao; Zhou, Yehao: Syzygies probing scattering amplitudes (2016)
  5. Hirschi, Valentin; Peraro, Tiziano: Tensor integrand reduction via Laurent expansion (2016)
  6. Johansson, Henrik; Ochirov, Alexander: Color-kinematics duality for QCD amplitudes (2016)
  7. Mastrolia, Pierpaolo; Peraro, Tiziano; Primo, Amedeo: Adaptive integrand decomposition in parallel and orthogonal space (2016)
  8. Peraro, Tiziano: Scattering amplitudes over finite fields and multivariate functional reconstruction (2016)
  9. Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.-S.; Stelzer, T.; Torrielli, P.; Zaro, M.: The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations (2014)
  10. Guillet, J. Ph.; Heinrich, G.; von Soden-Fraunhofen, J. F.: Tools for NLO automation: Extension of the golem95C integral library (2014)
  11. Peraro, Tiziano: Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes (2014)
  12. Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano: Multiloop integrand reduction for dimensionally regulated amplitudes (2013)
  13. Anastasiou, Charalampos; Herzog, Franz; Lazopoulos, Achilleas: The fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD (2012)
  14. Badger, Simon; Frellesvig, Hjalte; Zhang, Yang: Hepta-cuts of two-loop scattering amplitudes (2012)
  15. Britto, Ruth; Mirabella, Edoardo: External leg corrections in the unitarity method (2012)
  16. Mastrolia, Pierpaolo; Mirabella, Edoardo; Peraro, Tiziano: Integrand reduction of one-loop scattering amplitudes through Laurent series expansion (2012)
  17. Pittau, R.: Primary Feynman rules to calculate the (\epsilon)-dimensional integrand of any 1-loop amplitude (2012)
  18. Zhang, Yang: Integrand-level reduction of loop amplitudes by computational algebraic geometry methods (2012)
  19. Cullen, G.; Guillet, J.-Ph.; Heinrich, G.; Kleinschmidt, T.; Pilon, E.; Reiter, T.; Rodgers, M.: \textttGolem95C: a library for one-loop integrals with complex masses (2011)
  20. Frixione, Stefano: Colourful FKS subtraction (2011)

1 2 next