Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere. STRIPACK is a Fortran 77 software package that employs an incremental algorithm to construct a Delaunay triangulation and, optionally, a Voronoi diagram of a set of points (nodes) on the surface of the unit sphere. The triangulation covers the convex hull of the nodes, which need not be entire surface, while the Voronoi diagram covers the entire surface. The package provides a wide range of capabilities including an efficient means of updating the triangulation with nodal additions or deletions. For N nodes, the storage requirement for the triangulation is 13N integer storage locations in addition to 3N nodal coordinates. Using an off-line algorithm and work space of size 3N, the triangulation can be constructed with time complexity O(NlogN).

References in zbMATH (referenced in 30 articles , 1 standard article )

Showing results 1 to 20 of 30.
Sorted by year (citations)

1 2 next

  1. Gao, Yuan; Jin, Guangzhen; Liu, Jian-Guo: Inbetweening auto-animation via Fokker-Planck dynamics and thresholding (2021)
  2. Bartel, Felix; Hielscher, Ralf; Potts, Daniel: Fast cross-validation in harmonic approximation (2020)
  3. Kirschstein, Thomas; Liebscher, Steffen; Pandolfo, Giuseppe; Porzio, Giovanni C.; Ragozini, Giancarlo: On finite-sample robustness of directional location estimators (2019)
  4. Edelsbrunner, Herbert; Nikitenko, Anton: Random inscribed polytopes have similar radius functions as Poisson-Delaunay mosaics (2018)
  5. Bahrdt, Daniel; Seybold, Martin P.: Rational points on the unit sphere. Approximation complexity and practical constructions (2017)
  6. Bosler, Peter A.; Kent, James; Krasny, Robert; Jablonowski, Christiane: A Lagrangian particle method with remeshing for tracer transport on the sphere (2017)
  7. Liu, Xianyong; Ma, Lizhuang; Liu, Ligang: (P^2): a robust and rotationally invariant shape descriptor with applications to mesh saliency (2016)
  8. Reeger, Jonah A.; Fornberg, Bengt: Numerical quadrature over the surface of a sphere (2016)
  9. Bartholdi, Laurent; Buff, Xavier; Graf von Bothmer, Hans-Christian; Kröker, Jakob: Algorithmic construction of Hurwitz maps (2015)
  10. Beckmann, J.; Mhaskar, H. N.; Prestin, J.: Local numerical integration on the sphere (2014)
  11. Leiderman, Karin; Bouzarth, Elizabeth L.; Cortez, Ricardo; Layton, Anita T.: A regularization method for the numerical solution of periodic Stokes flow (2013)
  12. Womeldorff, G.; Peterson, J.; Gunzburger, M.; Ringler, T.: Unified matching grids for multidomain multiphysics simulations (2013)
  13. Atkinson, Kendall; Han, Weimin: Spherical harmonics and approximations on the unit sphere. An introduction (2012)
  14. Beckmann, J.; Mhaskar, H. N.; Prestin, J.: Quadrature formulas for integration of multivariate trigonometric polynomials on spherical triangles (2012)
  15. Pham, Duong; Tran, Thanh; Crothers, Simon: An overlapping additive Schwarz preconditioner for the Laplace-Beltrami equation using spherical splines (2012)
  16. Hernández-Lobato, Jose Miguel; Hernández-Lobato, Daniel; Suárez, Alberto: Network-based sparse Bayesian classification (2011)
  17. Rong, Guodong; Jin, Miao; Shuai, Liang; Guo, Xiaohu: Centroidal Voronoi tessellation in universal covering space of manifold surfaces (2011)
  18. Cortez, Ricardo; Cummins, Bree; Leiderman, Karin; Varela, Douglas: Computation of three-dimensional Brinkman flows using regularized methods (2010)
  19. Du, Qiang; Gunzburger, Max; Ju, Lili: Advances in studies and applications of centroidal Voronoi tessellations (2010)
  20. Civera, Javier; Davison, Andrew J.; Magallón, Juan A.; Montiel, J. M. M.: Drift-free real-time sequential mosaicing (2009) ioport

1 2 next