oomph-lib

oomph-lib: An object-oriented multi-physics finite-element library. This paper discusses certain aspects of the design and implementation of oomph-lib, an object-oriented multi-physics finite-element library, available as open-source software at http://www.oomph-lib.org. The main aim of the library is to provide an environment that facilitates the robust, adaptive solution of multi-physics problems by monolithic discretisations, while maximising the potential for code re-use. This is achieved by the extensive use of object-oriented programming techniques, including multiple inheritance, function overloading and template (generic) programming, which allow existing objects to be (re-)used in many different ways without having to change their original implementation.


References in zbMATH (referenced in 33 articles , 1 standard article )

Showing results 1 to 20 of 33.
Sorted by year (citations)

1 2 next

  1. Nielsen, Anne R.; Matharu, Puneet S.; Brøns, Morten: Topological bifurcations in the transition from two single vortices to a pair and a single vortex in the periodic wake behind an oscillating cylinder (2022)
  2. Uecker, Hannes: Continuation and bifurcation in nonlinear PDEs - algorithms, applications, and experiments (2022)
  3. Essink, Martin H.; Pandey, Anupam; Karpitschka, Stefan; Venner, Cornelis H.; Snoeijer, Jacco H.: Regimes of soft lubrication (2021)
  4. Fontana, João V.; Juel, Anne; Bergemann, Nico; Heil, Matthias; Hazel, Andrew L.: Modelling finger propagation in elasto-rigid channels (2021)
  5. Gaillard, Antoine; Keeler, Jack S.; Le Lay, Grégoire; Lemoult, Grégoire; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne: The life and fate of a bubble in a geometrically perturbed Hele-Shaw channel (2021)
  6. Renard, Yves; Poulios, Konstantinos: GetFEM. Automated FE modeling of multiphysics problems based on a generic weak form language (2021)
  7. Aslak W. Bergersen, Andreas Slyngstad, Sebastian Gjertsen, Alban Souche, Kristian Valen-Sendstad: turtleFSI: A Robust and Monolithic FEniCS-based Fluid-Structure Interaction Solver (2020) not zbMATH
  8. Nielsen, Anne R.; Heil, Matthias; Andersen, Morten; Brøns, Morten: Bifurcation theory for vortices with application to boundary layer eruption (2019)
  9. Shepherd, David; Miles, James; Heil, Matthias; Mihajlović, Milan: An adaptive step implicit midpoint rule for the time integration of Newton’s linearisations of non-linear problems with applications in micromagnetics (2019)
  10. Uecker, Hannes: Hopf bifurcation and time periodic orbits with \textttpde2path -- algorithms and applications (2019)
  11. Bergemann, Nico; Juel, Anne; Heil, Matthias: Viscous drops on a layer of the same fluid: from sinking, wedging and spreading to their long-time evolution (2018)
  12. Walker, Shawn W.: FELICITY: a Matlab/C++ toolbox for developing finite element methods and simulation modeling (2018)
  13. Hazel, Andrew L.; Mullin, Tom: On the buckling of elastic rings by external confinement (2017)
  14. Heil, Matthias; Rosso, Jordan; Hazel, Andrew L.; Brøns, Morten: Topological fluid mechanics of the formation of the Kármán-vortex street (2017)
  15. Johnson, C. G.; Jain, U.; Hazel, A. L.; Pihler-Puzović, D.; Mullin, T.: On the buckling of an elastic holey column (2017)
  16. Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne: Sensitivity of Saffman-Taylor fingers to channel-depth perturbations (2016)
  17. Heil, Matthias; Bertram, Christopher D.: A poroelastic fluid-structure interaction model of syringomyelia (2016)
  18. Lee, J.; Cookson, A.; Roy, I.; Kerfoot, E.; Asner, L.; Vigueras, G.; Sochi, T.; Deparis, S.; Michler, C.; Smith, N. P.; Nordsletten, D. A.: Multiphysics computational modeling in (\mathcalC\mathbfHeart) (2016)
  19. Hewitt, Richard E.; Harrison, Iain: Exponential sensitivity to symmetry imperfections in an exact Navier-Stokes solution (2012)
  20. Liao, Qifeng; Silvester, David: A simple yet effective a posteriori estimator for classical mixed approximation of Stokes equations (2012)

1 2 next


Further publications can be found at: http://oomph-lib.maths.man.ac.uk/doc/publications/html/index.html