BEAN

Symmetric Galerkin Boundary Element Method. Galerkin Boundary Element Method presents an introduction as well as recent developments of this accurate, powerful, and versatile method. The formulation possesses the attractive feature of producing a symmetric coefficient matrix. In addition, the Galerkin approximation allows standard continuous elements to be used for evaluation of hypersingular integrals. Chapter 11: BEAN: Boundary Element ANalysis program


References in zbMATH (referenced in 70 articles , 1 standard article )

Showing results 1 to 20 of 70.
Sorted by year (citations)

1 2 3 4 next

  1. Sun, D. Y.; Dong, C. Y.: Isogeometric analysis of the new integral formula for elastic energy change of heterogeneous materials (2021)
  2. Hosseinzadeh, Hossein; Dehghan, Mehdi; Sedaghatjoo, Zeynab: The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method (2020)
  3. Phan, Tan-Tung; Nguyen, Tuan-Kiet; Phan, Dinh-Huan; Phan, Anh-Vu: SGBEM analysis of diffraction of P- and SV-waves by a plane crack in an infinite domain (2020)
  4. Škerget, L.; Tadeu, A.; António, J. M. P.: Numerical simulation of heat transport in multilayered composite pipe (2020)
  5. Hodapp, M.; Anciaux, G.; Curtin, W. A.: Lattice Green function methods for atomistic/continuum coupling: theory and data-sparse implementation (2019)
  6. Phan, Dinh-Huan; Phan, Tan-Tung; Nguyen, Tuan-Kiet; Phan, Anh-Vu: Dynamic stress intensity factors for multiple parallel cracks in an infinite domain under the passage of a normal incident impact or blast P-wave (2019)
  7. Rungamornrat, Jaroon; Sukulthanasorn, Naruethep; Mear, Mark E.: Analysis for T-stress of cracks in 3D anisotropic elastic media by weakly singular integral equation method (2019)
  8. Zhang, H. H.; Liu, S. M.; Han, S. Y.; Fan, Li Feng: Computation of T-stresses for multiple-branched and intersecting cracks with the numerical manifold method (2019)
  9. Gao, Yan; Feng, Hui; Tian, Hao; Ju, Lili; Zhang, Xiaoping: Nodal-type Newton-Cotes rules for fractional hypersingular integrals (2018)
  10. Lee, Cheuk-Yu; Wang, Hui; Qin, Qing-Hua: Efficient hypersingular line and surface integrals direct evaluation by complex variable differentiation method (2018)
  11. Velasco, M. L.; Graciani, E.; Távara, L.; Correa, E.; París, F.: BEM multiscale modelling involving micromechanical damage in fibrous composites (2018)
  12. Nguyen, B. H.; Zhuang, X.; Wriggers, P.; Rabczuk, T.; Mear, M. E.; Tran, H. D.: Isogeometric symmetric Galerkin boundary element method for three-dimensional elasticity problems (2017)
  13. Parker, Daniel E.; Vasseur, Romain; Moore, Joel E.: Entanglement entropy in excited states of the quantum Lifshitz model (2017)
  14. Sedaghatjoo, Zeynab; Dehghan, Mehdi; Hosseinzadeh, Hossein: On uniqueness of numerical solution of boundary integral equations with 3-times monotone radial kernels (2017)
  15. Vodička, Roman; Mantič, Vladislav: An energy based formulation of a quasi-static interface damage model with a multilinear cohesive law (2017)
  16. Vodička, Roman; Mantič, Vladislav; Roubíček, Tomáš: Quasistatic normal-compliance contact problem of visco-elastic bodies with Coulomb friction implemented by QP and SGBEM (2017)
  17. Wünsche, M.; Sladek, Jan; Sladek, Vladimir; Zhang, C.; García-Sánchez, F.; Sáez, A.: Dynamic crack analysis in piezoelectric solids under time-harmonic loadings with a symmetric Galerkin boundary element method (2017)
  18. Xue, A.; Graciani, E.; Gray, L. J.; Mantič, V.; Garzon, Maria: Galerkin boundary integral formulation for axisymmetric Stokes flow (2017)
  19. Aimi, A.; Diligenti, M.; Sampoli, M. L.; Sestini, A.: Isogemetric analysis and symmetric Galerkin BEM: a 2D numerical study (2016)
  20. Petrov, Dmitry; Deng, Y.; Gray, L. J.; Ye, Wenjing: Grid-based volume integration for elasticity (2016)

1 2 3 4 next